answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
jolli1 [7]
2 years ago
8

An 8.0 m, 240 N uniform ladder rests against a smooth wall. The coefficient of static friction between the ladder and the ground

is 0.55, and the ladder makes a 50.0° angle with the ground. How far up the ladder can an 710 N person climb before the ladder begins to slip?

Physics
1 answer:
sweet [91]2 years ago
7 0

Answer:

5.7 m

Explanation:

AD = length of the ladder = L = 8 m

AB = distance of the center of mass of the ladder = (0.5) L = (0.5) 8 = 4 m

AC = distance of person on the ladder from the bottom end = x

W = weight of the ladder = 240 N

F_{g} = weight of the person = 710 N

F = force by the wall on the ladder

N = normal force by ground on the ladder = ?

Using equilibrium of force along the vertical direction

N = F_{g} + W

N = 710 + 240

N = 950 N

μ = Coefficient of static friction = 0.55

f =static frictional force on the ladder

Static frictional force is given as

f = μ N

f = (0.55) (950)

f = 522.5 N

Force equation along the horizontal direction is given as

F = f

F = 522.5 N

using equilibrium of torque about point A

F Sin50 (AD) = W Cos50 (AB) + (F_{g} Cos50 (AC))

(522.5) Sin50 (8) = (240) Cos50 (4) + (710) Cos50 (x)

x = 5.7 m

You might be interested in
On average, both arms and hands together account for 13% of a person's mass, while the head is 7.0% and the trunk and legs accou
BabaBlast [244]

Answer:

<em>176.38 rpm</em>

<em></em>

Explanation:

mass percentage of arms and legs = 13%

mass percentage of legs and trunk = 80%

mass percentage of head = 7%

Total mass of the skater = 74.0 kg

length of arms = 70 cm = 0.7 m

height of skater = 1.8 m

diameter of trunk = 35 cm = 0.35 m

Initial angular momentum = 68 rpm

<em>We assume:</em>

  1. <em>The spinning skater with her arms outstretched as a vertical cylinder (head, trunk, and legs) with two solid uniform rods (arms and hands) extended horizontally.</em>
  2. <em>friction between the skater and the ice is negligible.</em>

We split her body into two systems, the spinning hands as spinning rods

1. Each rod has moment of inertia = \frac{1}{3} mL^{2}

mass m of the arms is 13% of 74 kg = 0.13 x 74 = 9.62 kg

mass of each side will be assumed to be 9.62/2 = 4.81 kg

L = length of each arm

therefore,

I =  \frac{1}{3} x 4.81 x 0.7^{2} = 0.79 kg-m   for each arm

2. Her body as a cylinder has moment of inertia =  \frac{1}{2} mr^{2}

r = radius of her body = diameter/2 = 0.35/2 = 0.175 m

mass of body trunk = (80% + 7%) of 74 kg = 0.87 x 74 = 64.38 kg

I = \frac{1}{2} x 64.38 x 0.175^{2} = 0.99 kg-m

We consider each case

case 1: Body spinning with arm outstretched

<em>Total moment of inertia = sum of moments of inertia of both arms and moment of inertia of body trunk</em>

I = (0.79 x 2) +  0.99 = 2.57 kg-m

angular momentum = Iω

where ω = angular speed = 68.0 rpm = \frac{2\pi }{60} x 68 = 7.12 rad/s

angular momentum = 2.57 x 7.12 = 18.29 kg-rad/m-s

case 2: Arms pulled down parallel to trunk

<em>The momentum of inertia will be due to her body trunk alone</em> which is 0.91 kg-m

angular momentum =  Iω

=  0.99 x ω = 0.91ω

<em>according to conservation of angular momentum, both angular momentum must be equal</em>, therefore,

18.29 = 0.99ω

ω = 18.29/0.99 = 18.47 rad/s

18.47 ÷ \frac{2\pi }{60}  = <em>176.38 rpm</em>

7 0
2 years ago
Q1: A runner is jogging in a straight line at a steady vr= 6.8 km/hr. When the runner is L= 2.4 km from the finish line, a bird
serious [3.7K]

Answer:

Q1: 3.2km

Q2: 4.8K

Explanation:

Q1:

So db is the distance of bird, and dr is the distance of runner

db = 2vr  and the distance of bird is going to be 2 times greater than the runner.

formulas: db = 2vr & db = 2dr

  1. db = 2dr
  2. L + (L - x) = 2x
  3. 2L - x = 2x
  4. 2L = 3x
  5. x = \frac{2}{3}L

Insert it in x = \frac{2}{3}L

\frac{2}{3}(2.4km) = 1.6km

Now we use formula db = 2dr

  1. db = 2L - x
  2. db = 2(2.4km) - 1.6km
  3. <u>db = 3.2km</u>

Q2:

Formulas: Vr = L /Δt & Vb = db/Δt

  1. Vr = L/ Δt ⇒ Δt = \frac{L}{Vr}
  2. \frac{2.4km}{6.8km/hr}
  3. \frac{6}{17}hr

(Km cancel each other)

  1. Vb = db/Δt ⇒ db = VbΔt
  2. 13.6km/hr(\frac{6}{17}hr )
  3. <u>4.8km</u>

(hr cancel each other)

Hope it helps you :)

6 0
2 years ago
A woman takes her dog Rover for a walk on a leash. To get the little pooch moving forward, she pulls on the leash with a force o
stepladder [879]

<u>Answer:</u>

15.97 N force is tending to pull Rover forward

<u>Explanation:</u>

 The woman pulls on the leash with a force of 20.0 N at an angle of 37° above the horizontal. The arrangement is shown in the given figure,

 We nee to find the pulling force P. The 20.0 N force has two components, 20.0 cos 37 in horizontal direction and 20.0 sin 37 in vertical direction.

  The horizontal component is equal to pulling force P, which will pull Rover forward/

  So, P = 20.0 cos 37 = 15.97 N

 15.97 N force is tending to pull Rover forward.

4 0
2 years ago
The diagram shows a heater above a thermometer. The thermometer bulb is in the position shown. Which row shows how the heat ener
balu736 [363]

Answer:

The diagram shows a heater above a thermometer. The thermometer bulb is in the position shown. How the heat

5 0
2 years ago
4.A photon of green light strikes an unknown metal and an electron is emitted. The voltage is set to 2 volts. The electron canno
Anarel [89]
4) The correct answer is:
<span>B. An electron will be emitted in the second experiment, but it cannot be determined whether it will reach the second plate. 

In fact, violet light has higher frequency than green light. This means that photons of violet light carry more energy than photons of green light (remember that the energy of a photon is proportional to its frequency: </span>E=hf)<span>, so when they hit the surface of the metal, more energy is transferred to the electrons. The electron was already emitted with green light, so it must be emitted also with violet light, given the more energy transferred. The electron will also have more kinetic energy when hit by violet light, however, we cannot determine if it will reach the second plate, since we don't know how much energy has been used to extract the electron from the metal (in fact, we don't know the work function of the metal, i.e. the energy needed to extract the electron)


3)  The correct answer is
</span><span>A. Violet light will cause electrons to be emitted at greater velocities than those removed by green light.

In fact, </span>violet light has higher frequency than green light. This means that photons of violet light carry more energy than photons of green light (remember that the energy of a photon is proportional to its frequency: E=hf), so when they hit the surface of the metal, more energy is transferred to the electrons. Therefore, the emitted electrons will have on average greater energy (and so, greater velocity) than those removed by green light.
3 0
2 years ago
Other questions:
  • On which planet would a spaceship need the largest force to take off
    14·2 answers
  • A space station consists of two donut-shaped living chambers, A and B, that have the radii shown in the drawing. As the station
    12·1 answer
  • A 25-turn circular coil of wire has diameter 1.00 m. It is placed with its axis along the direction of the Earth’s magnetic fiel
    10·1 answer
  • A series circuit has two 10-ohm bulb is added in a series. Technician A says that the three bulbs will be dimmer than when only
    14·1 answer
  • A sinusoidally-varying voltage V(t)=V0sin(2pift) with amplitude V0 = 10 V and frequency f = 100 Hz is impressed across the plate
    7·1 answer
  • Many birds can attain very high speeds when diving. Using radar, scientists measured the altitude of a barn swallow in a vertica
    15·1 answer
  • Two very large parallel metal plates, separated by 0.20 m, are connected across a 12-V source of potential. An electron is relea
    15·1 answer
  • Lasers are classified according to the eye-damage danger they pose. Class 2 lasers, including many laser pointers, produce visib
    15·1 answer
  • What is the concentration of molecular oxygen (O2) in mol/L on a June day in Toronto when atmospheric pressure is 1.0 atm and th
    15·1 answer
  • The superhero Green Lantern steps from the top of a tall building. He falls freely from rest to the ground, falling half the tot
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!