The atomic mass of a certain element is summation of the product of the decimal equivalent of the percentage abundance and the given atomic mass of each of the isotope. If we let x be the percentage abundance of the 86 amu-isotope then, the second one is 1-x such that,
x(86) + (1 - x)(90) = 87.08
The value of x from the equation is 0.73. This value is already greater than 0.5. Thus, the isotope with greatest abundance is that which is 86 amu.
Answer:
umm.. B. a base that generates a lot of hydroxide ions in water.
Answer:
- <u><em>The leftover reactant is the nitrogen gas, N₂.</em></u>
Explanation:
As per your description:
<u>1. Square on the left: N₂(g)</u>
- 3 units of two joint circles: this represents 3 molecules of nitrogen gas, N₂(g).
<u>2. Square on the right: H₂(g)</u>
- 3 units of two joint circles: this represents 3 molecules of hydrogen gas, H₂(g).
<u>3. Reaction</u>
If the maximum possible amount of NH₃ is formed during the reaction, you assume that the reaction goes to completion.
The chemical equation that represents the reaction is:
Which must be balanced:
That means that 1 molecule (or 1 mol) of N₂(g) reacts with 3 molecules (or 3 moles ) of H₂(g) to produce 2 molecules (or 2 moles) of NH₃(g).
Since, the squares show that there are 3 molecules of each reactant, the 3 molecules of hydrogen gas will be able to react with 1 molecule of nitrogen gas. When that happens, all the hydrogen gas is consumend and yet two molecules of nitrogen gas will remain unreacted. Hence, the nitrogen gas is the leftover reactant.
Answer is: 0,133 mol/ l· atm.
T(chlorine) = 10°C = 283K.
p(chlorine) = 1 atm.
V(chlorine) = 3,10 l.
R - gas constant, R = 0.0821 atm·l/mol·K.
Ideal gas law: p·V = n·R·T
n(chlorine) = p·V ÷ R·T.
n(chlorine) = 1atm · 3,10l ÷ 0,0821 atm·l/mol·K · 283K = 0,133mol.
Henry's law: c = p·k.
k - <span>Henry's law constant.
</span>c - solubility of a gas at a fixed temperature in a particular solvent.
c = 0,133 mol/l.
k = 0,133 mol/l ÷ 1 atm = 0,133 mol/ l· atm.
Answer : The combustion is a process in which oxygen is released as a by-product of oxidation-reduction reactions.
Explanation :
Combustion reaction : It is defined as the reactions in which a hydrocarbon reacts with oxygen gas to produce carbon dioxide and water.
The chemical equation of combustion reaction is:

The combustion reaction is also a redox reaction.
Redox reaction or Oxidation-reduction reaction : It is defined as the reaction in which the oxidation and reduction reaction takes place simultaneously.
Oxidation reaction : It is defined as the reaction in which a substance looses its electrons. In this, oxidation state of an element increases. Or we can say that in oxidation, the loss of electrons takes place.
Reduction reaction : It is defined as the reaction in which a substance gains electrons. In this, oxidation state of an element decreases. Or we can say that in reduction, the gain of electrons takes place.
The combustion reaction is also a redox reaction in which the carbon shows oxidation by the addition of oxygen or removal of hydrogen and oxygen shows reduction by the addition of hydrogen or removal of oxygen.
Hence, the combustion is a process in which oxygen is released as a by-product of oxidation-reduction reactions.