The question is incomplete, the complete question is;
The table above summarizes data given to a student to evaluate the type of change that took place when substance X was mixed with water. The student claimed that the data did not provide enough evidence to determine whether a chemical or physical change took place and that additional tests were needed. Which of the following identifies the best way to gather evidence to support the type of change that occurred when water and Xwere mixed?
A. Measuring the melting point of the mixture of water and X
B. Adding another substance to the mixture of water and X to see whether a solid forms
C Measuring and comparing the masses of the water, X, and the mixture of water and X
D Measuring the electrical conductivities of X and the mixture of water and X
Answer:
D Measuring the electrical conductivities of X and the mixture of water and X
Explanation:
Unfortunately, I am unable to reproduce the table here. However, from the table, the temperature of the of the mixture of the solid X and water was 101.6°C. This is above the boiling point of water and way below the temperature of the solid X.
This goes a long way to suggest that there was some kind of interaction between the water and X which accounted for the observed temperature of the system of X in water.
The only way we can be able to confirm if X actually dissolved in water is to measure the conductivity of the water. dissolved solids increase the conductivity of water.
We are given that the balanced chemical reaction is:
cacl2⋅2h2o(aq) +
k2c2o4⋅h2o(aq) --->
cac2o4⋅h2o(s) +
2kcl(aq) + 2h2o(l)
We known that
the product was oven dried, therefore the mass of 0.333 g pertains only to that
of the substance cac2o4⋅h2o(s). So what we will do first is to convert this
into moles by dividing the mass with the molar mass. The molar mass of cac2o4⋅h2o(s) is
molar mass of cac2o4 plus the
molar mass of h2o.
molar mass cac2o4⋅h2o(s) = 128.10
+ 18 = 146.10 g /mole
moles cac2o4⋅h2o(s) =
0.333 / 146.10 = 2.28 x 10^-3 moles
Looking at
the balanced chemical reaction, the ratio of cac2o4⋅h2o(s) and k2c2o4⋅h2o(aq) is
1:1, therefore:
moles k2c2o4⋅h2o(aq) = 2.28
x 10^-3 moles
Converting
this to mass:
mass k2c2o4⋅h2o(aq) = 2.28
x 10^-3 moles (184.24 g /mol) = 0.419931006 g
Therefore:
The mass of k2c2o4⋅<span>h2o(aq) in
the salt mixture is about 0.420 g</span>
Q1)
the number of moles can be calculated as follows
number of moles = mass present / molar mass
number of moles is the amount of substance.
4.8 g of Ca was added therefore mass present of Ca is 4.8 g
molar mass of Ca is 40 g/mol
molar mass is the mass of 1 mol of Ca
therefore if we substitute these values in the equation
number of moles of Ca = 4.8 g / 40 g/mol = 0.12 mol
0.12 mol of Ca is present
q2)
next we are asked to calculate the number of moles of water present
again we can use the same equation to find the number of moles of water
number of moles = mass present / molar mass
3.6 g of water is present
sum of the products of the molar masses of the individual elements by the number of atoms
H - 1 g/mol and O - 16 g/mol
molar mass of water = (1 g/mol x 2 ) + 16 g/mol = 18 g/mol
molar mass of H₂O is 18 g/mol
therefore number of moles of water = 3.6 g / 18 g/mol = 0.2 mol
0.2 mol of water is present
"You may find what you seek, or you might not" Is an excellent quote that might help.
The answer is 200 g.
If the molar mass of CaCl2 is 110.98 g/mol, this means there are 110.98 g in 1 L of 1 M solution.
Let's find how many g of CaCl2 are present in 0.720 M.
110.98 g : 1 M = x : 0.720 M
x = 110.98 g * 0.720 M : 1 M
x = 79.90 g
So there are 79.90 g in 0.720 M. In other words, in 1 L of 0.720 M solution there will be 79.90 g.
Now, we need to prepare ten beakers with 250 mL of solutions:
10 * 250 mL = 2500 mL = 2.5 L
79.90 g : 1 L = x : 2.5 L
x = 79.90 g * 2.5 L : 1 L
x = 199.75 g ≈ 200 g