Answer:
15.7 m/s
Explanation:
The motion of the cannonball is a accelerated motion with constant acceleration g = 9.8 m/s^2 towards the ground (gravitational acceleration). Therefore, the velocity of the ball at time t is given by:

where
u = 0 is the initial velocity
g = 9.8 m/s^2 is the acceleration
t is the time
If we substitute t=1.6 s into the equation, we find the final velocity of the cannonball:

Horizontal component = (10N) · sin (20°) = 3.42... N (rounded)
Vertical component = (10N) · cos (20°) = 9.39... N (rounded)
Explanation:it is beause they are sharper and also have less surface area and therefore more pressure
Answer:
Where is the text?
Explanation:
If you refer to the short sentence you wrote as text, I believe the answer is probably the word "crashes" because it shows how the momentum was transferred.