Answer:
The error she made was that she was adding x and 2.75. She should subtract 2.75 from x.
Another mistake that she made was that she sold each for $7 assuming that she would make a profit of 78, but she should see each necklace for $12.5 so that she could make a profit of $78.
Step-by-step explanation:
The error she made was that she was adding x and 2.75.
She should write the equation as 8 (x - 2.75) = 78; as she spends $2.75 to make a necklace.
By using the correct equation: 8 (x - 2.75) = 78
=> 8x - 22 = 78
=> 8x = 78 + 22
=> 8x = 100
=> x = 100/8
=> x = 12.5
Another mistake that she made was that she sold each for $7 assuming that she would make a profit of 78, but she should see each necklace for $12.5 so that she could make a profit of $78.
Hope this helps you.
Answer:
0.02, 0.152, 0.2 0.37, 0.4
Step-by-step explanation:
Answer:
A and C
Step-by-step explanation:
To determine which events are equal, we explicitly define the elements in each set builder.
For event A
A={1.3}
for event B
B={x|x is a number on a die}
The possible numbers on a die are 1,2,3,4,5 and 6. Hence event B is computed as
B={1,2,3,4,5,6}
for event C
![C=[x|x^{2}-4x+3]\\solving x^{2}-4x+3\\x^{2}-4x+3=0\\x^{2}-3x-x+3=0\\x(x-3)-1(x-3)=0\\x=3 or x=1](https://tex.z-dn.net/?f=C%3D%5Bx%7Cx%5E%7B2%7D-4x%2B3%5D%5C%5Csolving%20%20x%5E%7B2%7D-4x%2B3%5C%5Cx%5E%7B2%7D-4x%2B3%3D0%5C%5Cx%5E%7B2%7D-3x-x%2B3%3D0%5C%5Cx%28x-3%29-1%28x-3%29%3D0%5C%5Cx%3D3%20or%20x%3D1)
Hence the set c is C={1,3}
and for the set D {x| x is the number of heads when six coins re tossed }
In the tossing a six coins it is possible not to have any head and it is possible to have head ranging from 1 to 6
Hence the set D can be expressed as
D={0,1,2,3,4,5,6}
In conclusion, when all the set are compared only set A and set C are equal
Given:
μ = 68 in, population mean
σ = 3 in, population standard deviation
Calculate z-scores for the following random variable and determine their probabilities from standard tables.
x = 72 in:
z = (x-μ)/σ = (72-68)/3 = 1.333
P(x) = 0.9088
x = 64 in:
z = (64 -38)/3 = -1.333
P(x) = 0.0912
x = 65 in
z = (65 - 68)/3 = -1
P(x) = 0.1587
x = 71:
z = (71-68)/3 = 1
P(x) = 0.8413
Part (a)
For x > 72 in, obtain
300 - 300*0.9088 = 27.36
Answer: 27
Part (b)
For x ≤ 64 in, obtain
300*0.0912 = 27.36
Answer: 27
Part (c)
For 65 ≤ x ≤ 71, obtain
300*(0.8413 - 0.1587) = 204.78
Answer: 204
Part (d)
For x = 68 in, obtain
z = 0
P(x) = 0.5
The number of students is
300*0.5 = 150
Answer: 150