Hello!
A stretched spring has 5184 J of elastic potential energy and a spring constant of 16,200 N/m. What is the displacement of the spring?
0.57 m
0.64 m
0.80 m
1.25 m
Data:



For a spring (or an elastic), the elastic potential energy is calculated by the following expression:

Where k represents the elastic constant of the spring (or elastic) and x the deformation or displacement suffered by the spring.
Solving:









Answer:
The displacement of the spring = 0.8 m (or 0.80 m)
_________________________________________
I Hope this helps, greetings ... Dexteright02! =)
<span>1.5 minutes per rotation.
The formula for centripetal force is
A = v^2/r
where
A = acceleration
v = velocity
r = radius
So let's substitute the known values and solve for v. So
F = v^2/r
0.98 m/s^2 = v^2/200 m
196 m^2/s^2 = v^2
14 m/s = v
So we need a velocity of 14 m/s. Let's calculate how fast the station needs to spin.
Its circumference is 2*pi*r, so
C = 2 * 3.14159 * 200 m
C = 1256.636 m
And we need a velocity of 14 m/s, so
1256.636 m / 14 m/s = 89.75971429 s
Rounding to 2 significant digits gives us a rotational period of 90 seconds, or 1.5 minutes.</span>
To
solve this problem, we assume that the wavelength of the light in air is 500
nanometers.
For this case we
only need the refractive index of the polystyrene. For an antireflective
coating, we need a quarter of wave thickness at the wavelength in the air. Which
means that the antireflective coating needs to be as thick as 1/4 of the
wavelength, divided by the coating’s refractive index. This is expressed
mathematically in the form:
x = λ / (4 * n)
where,
x = thickness
λ = wavelength
of light
n = index of
refraction of polystyrene
Substituting:
x = 500 nm / (4
* 1.49)
x = 500 nm / 5.96
x = 83.90 nm
On comparing values , we see that student which has the largest percent error is <u>A. Student 4: 9.61 m/s2
.</u>
<u>Explanation:</u>
Here, we have Four students measured the acceleration of gravity. The accepted value for their location is 9.78m/s2. Let's calculate which student’s measurement has the largest percent error :
<u>A. Student 4: 9.61 m/s2
</u>
Percentage of error =
%.
<u>B. Student 3: 9.88 m/s2
</u>
Percentage of error =
%.
<u>C. Student 2: 9.79 m/s2
</u>
Percentage of error =
% .
<u>D. Student 1: 9.78 m/s2</u>
Percentage of error =
% .
On comparing values , we see that student which has the largest percent error is <u>A. Student 4: 9.61 m/s2
.</u>