Cryogens and dry ice are cryogenic substances that cause skin related problems if not handled carefully. These are extremely dangerous to touch and cause boiling of skin. The skin is severely damages if touched with naked hands.
Care should be taken while handling cryogens Use of specific gloves and personal protective equipments to cover yourself.
Answer: FALSE
This is the DNA. I'm going to only use the upper strand to demonstrate what this strand would code for before and after a single bp deletion (so write it as mRNA). I will also write it how it's easier to see this which is to split them up into the 3 base codon system. Note that you don't need to know the amino acid code - you use a table to find these.
ORIGINAL (mRNA on top, Amino Acid (AA) on bottom:
5'-AGC GGG AUG AGC GCA UGU GGC GCA UAA CUG-3'
SER GLY MET SER ALA CYS GLY ALA STOP LEU
Note that the protein would stop being made at the stop codon and the LEU wouldn't matter at the end...
Now, I will remove one bp...(I bolded it up top). Rewrite the mRNA and find the corresponding AA...
NEW
5'-AGC GGG AUG GCG CAU GTG GCG CAU AAC UG-3'
SER GLY MET ALA HIS VAL ALA HIS ASN .....
Completely different amino acid sequence after the methionine (MET). The stop codon is gone...the protein would continue being translated until it reaches another stop codon...so not what was supposed to be made!
The areas at the very front of the cortex assist with self-control. This part of the brain is responsible of controlling the cognitive functions in humans like emotions, problem solving, language, memory and judgement. It basically is the control for our behavior with the surroundings.
Answer: enable them to imprint on the facility
Explanation:
The addition of the chemicals to the river will help the fishes to recognize that this was their native habitat where they got birth and grew. This will act as a imprint formed by the facility which will help the fishes to recognize the water of the facility. This will help in increasing the number of fishes which return back to the facility.
Answer:
A. NADH and FADH2 both donate electrons at the same location.
Explanation:
In the respiratory chain, four large protein complexes inserted into the mitochondrial inner membrane transport NADH and FADH₂ electrons (formed in glycolysis and the Krebs cycle) to oxygen gas, reducing them to NAD⁺ and FAD, respectively.
These electrons have great affinity for oxygen gas and, when combined with it, reduce it to water molecules at the end of the reaction.
Oxygen gas effectively participates in cellular respiration at this stage, so its absence would imply interruption of the process.
NADH and FADH₂ electrons, when attracted to oxygen, travel a path through protein complexes, releasing energy in this process.
The energy released by the NADH and FADH₂ electrons in the respiratory chain in theory yields <u>34</u> <u>ATP</u>, however, under normal conditions an average of 26 ATP molecules is formed.
If we consider that these 26 molecules are added to the two ATP formed in glycolysis and two ATP formed in the Krebs cycle, it can be said that cellular respiration reaches a maximum yield of 30 ATP per glucose molecule, although theoretically this number was 38 ATP per glucose molecule.