Answer: d. More than 6.5 grams of copper (II) is formed, and some copper chloride is left in the reaction mixture.
Explanation: 
As can be seen from the chemical equation, 2 moles of aluminium react with 3 moles of copper chloride.
According to mole concept, 1 mole of every substance weighs equal to its molar mass.
Aluminium is the limiting reagent as it limits the formation of product and copper chloride is the excess reagent as (14-7.5)=6.5 g is left as such.
Thus 54 g of of aluminium react with 270 g of copper chloride.
1.50 g of aluminium react with=
of copper chloride.
3 moles of copper chloride gives 3 moles of copper.
7.5 g of copper chloride gives 7.5 g of copper.
Answer:
<span>23.6
g carbon dioxide comes from 8.6 g of CH4 or 10.7 g carbon dioxide comes from
15.6 g O that means the 15.6 g of oxygen is still the limiting reactant because
it gets used up and only makes 10.7 g of CO2. </span>
Explanation:
1) Balanced chemical equation:
CH₄ + 2O₂ → CO₂ + 2H₂O
2) mole ratios:
1 mol CH₄ : 2mol O₂ : 1 mol CO₂ : 2 mol H₂O
3) molar masses
CH₄: 16.04 g/mol
O₂: 32.0 g/mol
CO₂: 44.01 g/mol
4) Convert the reactant masses to number of moles, using the formula
number of moles = mass in grams / molar mass
CH₄: 8.6g / 16.04 g/mol = 0.5362 moles
<span />
O₂: 15.6 g / 32.0 g/mol = 0.4875 moles
5) If the whole 0.5632 moles of CH₄ reacted that yields to the same number of moles of CO₂ and that is a mass of:
mass of CO₂ = number of moles x molar mass = 23.60 g of CO₂
Which is what the first part of the answer says.
6) If the whole 0.4875 moles of O₂ reacted that would yield 0.4875 / 2 = 0.24375 moles of CO₂, and that is a mass of:
mass of CO₂ = 0.4875 grams x 44.01 g/mol = 10.7 grams of CO₂.
Which is what the second part of the answer says.
7) From the mole ratio you know infere that 0.5362 moles of CH₄ needs more twice number of moles of O₂, that is 1.0724 moles of O₂, and since there are only 0.4875 moles of O₂, this is the limiting reactant.
Which is what the chosen answer says.
8) From the mole ratios 0.4875 moles of O₂ produce 0.4875 / 2 moles of CO₂, and that is:
0.4875 / 2 mols x 44.01 g/mol = 10.7 g of CO₂, which is the last part of the answer.
First convert the amount of grams you have of each substance to moles. Find your limiting reactant by calculating how many grams are needed to complete this reaction. If done correctly, you would see that we need .226 moles of Potassium to complete this reaction. However, we only have .118 moles of Potassium, so K must be our limiting reactant. Then use the moles of K to find out how many moles of K^2S are made. Then convert the amount of moles of K^2S to grams and you should get 10.3 g K^2S
Answer:
1 M
Explanation:
Magnesium chloride will furnish chloride ions as:
Given :
Moles of magnesium chloride = 0.20 mol
Thus, moles of chlorine furnished by magnesium chloride is twice the moles of magnesium chloride as shown below:
Moles of chloride ions by magnesium chloride = 0.40 moles
Potassium chloride will furnish chloride ions as:
Given :
Moles of potassium chloride = 0.10 moles
Thus, moles of chlorine furnished by potassium chloride is same as the moles of potassium chloride as shown below:
Moles of chloride ions by potassium chloride = 0.10 moles
Total moles = 0.40 + 0.10 moles = 0.50 moles
Given, Volume = 500 mL = 0.5 L (1 mL = 10⁻³ L)
Concentration of chloride ions is:
<u>
The final concentration of chloride anion = 1 M</u>
Actually the strength
of London dispersion forces highly depend on the total number of electrons and
the area in which they are spread. We can see clearly that iodine will have the
strongest LDF's, and hence, have the highest boiling point (and melting point).
This is also the reason why iodine is a solid at room temperature, bromine is liquid
and chlorine and fluorine are gases.
Answer:
<span>Fluorine (F2)</span>