Answer:
0.12 mol KCl
Explanation:
2 KClO3 (s) 2 KCl (s) + 3 O2 (g)
15 g x mol
x g KCl = 15 g KClO3 x[ (1 mol KClO3)/ (122.5 g KClO3) ] x [(2 mol KCl)/ (2 mol KClO3)]
x g KCl = 0.12 mol KCl
Answer:
12.78 kJ
Explanation:
The correct balanced reaction would be

Mass of methanol = 
Moles of methanol can be obtained by dividing the mass of methanol with its molar mass 

Enthalpy change for the number of moles is given by


The change in enthalpy is 12.78 kJ.
To determine the time it takes to completely vaporize the given amount of water, we first determine the total heat that is being absorbed from the process. To do this, we need information on the latent heat of vaporization of water. This heat is being absorbed by the process of phase change without any change in the temperature of the system. For water, it is equal to 40.8 kJ / mol.
Total heat = 40.8 kJ / mol ( 1.50 mol ) = 61.2 kJ of heat is to be absorbed
Given the constant rate of 19.0 J/s supply of energy to the system, we determine the time as follows:
Time = 61.2 kJ ( 1000 J / 1 kJ ) / 19.0 J/s = 3221.05 s
The solution for this problem would be:
We are looking for the grams of magnesium that would have
been used in the reaction if one gram of silver were created. The computation
would be:
1 g Ag (1 mol Mg) (24.31 g/mol) / (2mol Ag)(107.87g/mol) =
0.1127 grams of Magnesium