Answer:
In a favorable reaction, the free energy of the products is less than the free energy of the reactants.
Explanation:
The free energy of a system is the amount of a system's internal energy that is available to perform work. The different forms of free energy include Gibbs free energy and Helmholtz free energy.
In a system at constant temperature and pressure, the energy that can be converted into work or the amount of usable energy in that system is known as Gibbs free energy. In a system at constant temperature and volume, the energy that can be converted into work is known as Helmholtz free energy.
The change in free energy of a system is the maximum usable energy that is released or absorbed by a system when it goes from the initial state (i.e., all reactants) to the final state (i.e., all products).
In a chemical reaction, some bonds in the reactants are broken by absorbing energy and new bonds are formed in the products by releasing energy. As the reaction proceeds, the free energy of reactants is much greater than the products. As the products are formed, the concentration of reactants decreases and the difference in their free energy also decreases. This chemical reaction will occur until chemical equilibrium is achieved i.e., the free energy of the products and reactants is equal and the difference in their free energy is zero.
Answer:
The cell reaction reaches equilibrium quickly and the cell emf becomes zero.
Explanation:
The purpose of a salt bridge is not to move electrons from the electrolyte, its main function is to maintain charge balance because the electrons are moving from one-half cell to the other.
A solution of a salt that dissociates easily is normally used. Water is ineffective at functioning as a salt bridge. Hence the effect stated in the answer.
Answer:
1000000000000
Explanation:
I dunow sorryyyyyyyyyyyyyyyyy!!!!!!!!! lollll !!!!!!!!!!!?!! I need the pickture of your questions
Answer:

Explanation:
Given the amount of heat absorbed and the amount of substance in moles, we may calculate the heat of vaporization. Heat of vaporization is defined as the amount of heat per 1 mole of substance required to evaporate that specific substance.
Based on the value of heat of vaporization, we will identify the substance. Firstly, let's calculate the heat of vaporization:

Secondly, let's use any table for heat of vaporization values for substances. We identify that the heat of vaporization of
is 18.7 kJ/mol
Answer:
Option c. It contians ionic bonds
Explanation:
Let's take as an example NaCl
An element from group 1 (alkali) with an halogen.
Elements from group 1 form cations with +1 (charge)
This ionic salt, can't never has the formula XZ₂
Ionic salts, also can be dissolved in water, and they don't contain covalent bonds.