Answer:
E = k Q 1 / (x₀-x₂) (x₀-x₁)
Explanation:
The electric field is given by
dE = k dq / r²
In this case as we have a continuous load distribution we can use the concept of linear density
λ= Q / x = dq / dx
dq = λ dx
We substitute in the equation
∫ dE = k ∫ λ dx / x²
We integrate
E = k λ (-1 / x)
We evaluate between the lower limits x = x₀- x₂ and higher x = x₀-x₁
E = k λ (-1 / x₀-x₁ + 1 / x₀-x₂)
E = k λ (x₂ -x₁) / (x₀-x₂) (x₀-x₁)
We replace the density
E = k (Q / (x₂-x₁)) [(x₂-x₁) / (x₀-x₂) (x₀-x₁)]
E = k Q 1 / (x₀-x₂) (x₀-x₁)
We need the power law for the change in potential energy (due to the Coulomb force) in bringing a charge q from infinity to distance r from charge Q. We are only interested in the ratio U₁/U₂, so I'm not going to bother with constants (like the permittivity of space).
<span>The potential energy of charge q is proportional to </span>
<span>∫[s=r to ∞] qQs⁻²ds = -qQs⁻¹|[s=r to ∞] = qQr⁻¹, </span>
<span>so if r₂ = 3r₁ and q₂ = q₁/4, then </span>
<span>U₁/U₂ = q₁Qr₂/(r₁q₂Q) = (q₁/q₂)(r₂/r₁) </span>
<span>= 4•3 = 12.</span>
Answer:
The magnitude of the rate of change of the child's momentum is 794.11 N.
Explanation:
Given that,
Mass of child = 27 kg
Speed of child in horizontal = 10 m/s
Length = 3.40 m
There is a rate of change of the perpendicular component of momentum.
Centripetal force acts always towards the center.
We need to calculate the magnitude of the rate of change of the child's momentum
Using formula of momentum


Put the value into the formula


Hence, The magnitude of the rate of change of the child's momentum is 794.11 N.
Answer:
0.83 ω
Explanation:
mass of flywheel, m = M
initial angular velocity of the flywheel, ω = ωo
mass of another flywheel, m' = M/5
radius of both the flywheels = R
let the final angular velocity of the system is ω'
Moment of inertia of the first flywheel , I = 0.5 MR²
Moment of inertia of the second flywheel, I' = 0.5 x M/5 x R² = 0.1 MR²
use the conservation of angular momentum as no external torque is applied on the system.
I x ω = ( I + I') x ω'
0.5 x MR² x ωo = (0.5 MR² + 0.1 MR²) x ω'
0.5 x MR² x ωo = 0.6 MR² x ω'
ω' = 0.83 ω
Thus, the final angular velocity of the system of flywheels is 0.83 ω.
Answer:
0.22m/s
Explanation:
The total momentum of the System is conserved. Total momentum of the system before the collision is equal to the total momentum of the system after collision. The total momentum is the sum of individual momentum of all the objects in that system.
momentum of an object = mass* velocity
Total Momentum before collision = 0.2*0.3 + 0.1*0.1= 0.07 kg⋅m/s;
Total momentum after collision = 0.1*0.26 + 0.2*x = 0.07;
Solve for x.