Mass of metal piece is 611 g and volume of graduated cylinder is 25.1 mL. When metal piece is placed in the graduated cylinder water level increases to 56.7 mL. The increase in volume is due to volume of metal piece that gets added to the volume of water.
Thus, volume of metal piece can be calculated by subtracting initial volume from the final one.

Thus, volume of metal piece will be 31.6 mL. The mass of metal piece is given 611 g, density of metal can be calculated as follows:

Therefore, density of metal is 19.33 g/mL.
Answer:
The answer to your question is P = 1.357 atm
Explanation:
Data
Volume = 22.4 L
1 mol
temperature = 100°C
a = 0.211 L² atm
b = 0.0171 L/mol
R = 0.082 atmL/mol°K
Convert temperature to °K
Temperature = 100 + 273
= 373°K
Formula

Substitution

Simplify
(P + 0.0094)(22.3829) = 30.586
Solve for P
P + 0.0094 = 
P + 0.0094 = 1.366
P = 1.336 - 0.0094
P = 1.357 atm
Answer:
By minimizing the height of the body's center of gravity relative to its center of buoyancy
Explanation:
In hydrostatics, the equilibrium state of a floating body relates to either a maximum or minimum of the potential energy.An equilibrium is stable when the potential energy is minimum.Minimizing the height of the floating body's center of gravity relative to its center of buoyancy attains a stable equilibrium configuration.
Answer:
The correct answer is:
Reaction B is more likely to occur at all than reaction A.
Explanation:
The activation energy in chemistry is the smallest amount of energy required to cause chemical or nuclear reaction in the reactants in chemical or nuclear systems. The activation energy is denoted by
, and it is measured in Joules (J), KiloJoules (KJ) or Kilocalories per mole (Kcal/mol)
The activation energy can be thought of simply as the minimum amount of energy required to overcome a barrier that prevents a reaction from occurring, hence, from our question, if Reaction A has a high activation energy, it means that the barrier to be overcome before a reaction will occur is large, meaning that the reaction system is more stable and the reaction is less likely to occur than Reaction B which has a low activation energy, meaning that just a relatively small amount of energy, when applied to the reaction system, will initiate a reaction, making it more likely to occur than reaction A.
You should also note that catalysts are substances that are capable of reducing the activation energy of a system, but remains unchanged at the end of the system.
Answer:
The answer to your question is: 83.9 %
Explanation:
Data
Cu = 31.8 g
S = 50 g
CuS = 40 g
yield = ?
Equation
Cu + S ⇒ CuS
MW Cu = 64 g
MW S = 32 g
MW CuS = 96 g
Ratio (theoretical/experimental)
Experimental 50/31.8 = 1.57
Theoretical 32/64 = 0.5 limiting reactant Cu
64 g of Cu ------------------ 96 g of CuS
31.8 g ------------------- x
x = (31.8 x 96) / 64
x = 47.7 g of CuS
% yield = (40/47.7) x 100
= 83.9 %