Water is the only one of these that would work by process of elimination.
3 Mg + 1 Fe2O3 →2 Fe + 3MgO
Type of Reaction: Single displacement.
Answer:
The mass of water = 219.1 grams
Explanation:
Step 1: Data given
Mass of aluminium = 32.5 grams
specific heat capacity aluminium = 0.921 J/g°C
Temperature = 82.4 °C
Temperature of water = 22.3 °C
The final temperature = 24.2 °C
Step 2: Calculate the mass of water
Heat lost = heat gained
Qlost = -Qgained
Qaluminium = -Qwater
Q = m*c*ΔT
m(aluminium)*c(aluminium)*ΔT(aluminium) = -m(water)*c(water)*ΔT(water)
⇒with m(aluminium) = the mass of aluminium = 32.5 grams
⇒with c(aluminium) = the specific heat of aluminium = 0.921 J/g°C
⇒with ΔT(aluminium) = the change of temperature of aluminium = 24.2 °C - 82.4 °C = -58.2 °C
⇒with m(water) = the mass of water = TO BE DETERMINED
⇒with c(water) = 4.184 J/g°C
⇒with ΔT(water) = the change of temperature of water = 24.2 °C - 22.3 °C = 1.9 °C
32.5 * 0.921 * -58.2 = -m * 4.184 * 1.9
-1742.1 = -7.95m
m = 219.1 grams
The mass of water = 219.1 grams
Explanation:
Dichloromethane is flammable - FALSE
Methanol is flammable. - TRUE
Concentrated sulfuric acid is corrosive. - TRUE
10% sodium carbonate solution must be used in the fume hood. - FALSE
Benzoyl chloride is a lachrymator. - TRUE
Answer:
1) 0.009 61 g C; 2) 0.008 00 mol C
Step-by-step explanation:
You know that you will need a balanced equation with masses, moles, and molar masses, so gather all the information in one place.
M_r: 12.01 44.01
C + ½O₂ ⟶ CO₂
m/g: 0.352
1) <em>Mass of C
</em>
Convert grams of CO₂ to grams of C
44.01 g CO₂ = 12.01 g C
Mass of C = 0.352 g CO₂ × 12.01 g C/44.01 g CO₂
Mass of C = 0.009 61 g C
2) <em>Moles of C
</em>
Convert mass of C to moles of C.
1 mol C = 12.01 g C
Moles of C = 0.00961 g C × (1 mol C/12.01 g C)
Moles of C = 0.008 00 mol C
All the carbon comes from Compound A, so there are 0.008 00 mol C in Compound A.