Answer: k= 
Explanation:
Recall that the formula for kinetic energy is given below as
k = 
where k=kinetic energy (joules), m= mass of object (kg), v= velocity of object m/s)
For cart A
= mass of cart A
= v = velocity of cart A
= kinetic energy of cart A
hence,
= 
For cart B
= mass of cart B
= 2v = velocity of cart B
= kinetic energy of cart B
hence,
=
= 2
from the question, both cart are identical which implies they have the same mass i.e
=
= m which implies that
and 
The total kinetic energy K is the sum of cart A and cart B kinetic energy


hence

Answer:
longitudinal wave
Explanation:
it is perpendicular to the direction of the wave
Answer:
The angular velocity of Ball A will be greater than the angular velocity of Ball B when they reach the top of the hill.
Explanation:
Angular velocity can be defined as how fast an object rotates relative to a given point or frame of reference.
The question said the hill encountered by Ball A is frictionless, so Ball A will continue to rotate at the same rate it started with even when it reached the top of the hill.
Ball B on the other hand rolls without slipping over its hill, i.e there's friction to slow down its rotational motion which thus reduces how fast Ball B will rotate at the top of the hill
You first us 1/2(mv^2) to solve for the potential energy and then put that in to PE=m*g*h and solve for hight
Answer and Explanation:
A. We have temperature t = 32
Speed of sound, s = 1087.5
As t increases by 1⁰f speed increases by 1.2
So that
S = 1088.6
T= 33⁰f
We have 2 equations
1087.5 = k(32) + c
1088.6 = k(33) + c
Subtracting both equations
(33-32)k = 1088.6-1087.5
K = 1.1
b.). S = kT + c
1087.5 = 32(1.1) + c
Such that
C = 1052.3
Therefore
S = 1.1(t) + 1052.3
C.). S = 1.1t + 1052.3
We make t subject of the formula
T = s/1.1 - 1052.3/1.1
T = 0.90(s) - 956.3
D. This means that We have temperature to rise by 0.90 whenever speed is increased