answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
cluponka [151]
2 years ago
12

Be sure to answer all parts. The standard enthalpy of formation and the standard entropy of gaseous benzene are 82.93 kJ/mol and

269.2 J/K·mol, respectively. Calculate ΔH o , ΔS o , and ΔG o for the following process at 25.00°C. C6H6(l) → C6H6(g) ΔH o = kJ/mol ΔS o = J/K·mol ΔG o = kJ/mol Is the reaction spontaneous at 25.00°C?
Chemistry
2 answers:
SIZIF [17.4K]2 years ago
7 0

The reaction <u>is not spontaneous</u> at 25.00°C

<h3>Further explanation </h3>

Gibbs free energy is the maximum possible work given by chemical reactions at constant pressure and temperature. Gibbs free energy can be used to determine the spontaneity of a reaction

If the Gibbs free energy value is <0 (negative) then the chemical reaction occurs spontaneously. If the change in free energy is zero, then the chemical reaction is at equilibrium, if it is> 0, the process is not spontaneous

Free energy of reaction (G) is the sum of its enthalpy (H) plus the product of the temperature and the entropy (S) of the system

Can be formulated: (at any temperature)

\large {\boxed {\bold {\Delta G = \Delta H-T. \Delta S}}}

or at (25 Celsius / 298 K, 1 atm = standard)

ΔG ° reaction = ΔG ° f (products) - ΔG ° f (reactants)

Under standard conditions:

<h3>∆G ° = ∆H ° - T∆S ° </h3>

The value of °H ° can be calculated from the change in enthalpy of standard formation:

∆H ° (reaction) = ∑Hf ° (product) - ∑ Hf ° (reagent)

The value of ΔS ° can be calculated from standard entropy data

∆S ° (reaction) = ∑S ° (product) - ∑ S ° (reagent)

We complete the existing data from the reaction

C6H6 (l) → C6H6 (g)

∑Hf ° C6H6 (l): 49.04 kJ mol⁻¹

∑ Hf ° C6H6 (g): 82.93kJ mol⁻¹

∑S ° [C6H6 (l)]: 172.8 J mol⁻¹

∑S ° [C6H6 (g)]: 269.2 J mol⁻¹

so that:

∆H ° (reaction) = ∑ Hf ° C6H6 (g) -∑Hf ° C6H6 (l)

∆H ° (reaction) = 82.93kJ mol⁻¹ - 49.04 kJ mol⁻¹

∆H ° (reaction) = 33.89kJ mol⁻¹

∆S ° (reaction) = ∑S ° [C6H6 (g)] - ∑S ° [C6H6 (l)]

∆S ° (reaction) = 269.2J mol⁻¹ - 172.8 J mol⁻¹

∆S ° (reaction) = 96.4 J mol⁻¹ = 96.4 .10-3 kJ mol⁻¹

∆G ° at 298 K

∆G ° = ∆H ° - T∆S °

∆G ° = 33.89kJ mol⁻¹ - 298.96.4 .10-3 kJ mol⁻¹

∆G ° = 5.16 kJ mol⁻¹

Because the value of ∆G ° is positive, the reaction is not spontaneous

<h3>Learn more   </h3>

Delta H solution  

brainly.com/question/10600048  

an exothermic reaction  

brainly.com/question/1831525  

as endothermic or exothermic  

brainly.com/question/11419458  

an exothermic dissolving process  

brainly.com/question/10541336  

Keywords: the standard gibbs free energy of formation,nonspontaneous

skelet666 [1.2K]2 years ago
6 0

Answer : The values of \Delta H^o,\Delta S^o\text{ and }\Delta G^o are 33.89kJ,95.94J/K\text{ and }5.299kJ/mol respectively.

Explanation :

The given balanced chemical reaction is,

C_6H_6(l)\rightarrow C_6H_6(g)

First we have to calculate the enthalpy of reaction (\Delta H^o).

\Delta H^o=H_f_{product}-H_f_{reactant}

\Delta H^o=[n_{C_6H_6(g)}\times \Delta H_f^0_{(C_6H_6(g))}]-[n_{C_6H_6(l)}\times \Delta H_f^0_{(C_6H_6(l))}]

where,

\Delta H^o = enthalpy of reaction = ?

n = number of moles

\Delta H_f^0_{(C_6H_6(g))} = standard enthalpy of formation  of gaseous benzene = 82.93 kJ/mol

\Delta H_f^0_{(C_6H_6(l))} = standard enthalpy of formation  of liquid benzene = 49.04 kJ/mol

Now put all the given values in this expression, we get:

\Delta H^o=[1mole\times (82.93kJ/mol)]-[1mole\times (49.04J/mol)]

\Delta H^o=33.89kJ/mol=33890J/mol

Now we have to calculate the entropy of reaction (\Delta S^o).

\Delta S^o=S_f_{product}-S_f_{reactant}

\Delta S^o=[n_{C_6H_6(g)}\times \Delta S^0_{(C_6H_6(g))}]-[n_{C_6H_6(l)}\times \Delta S^0_{(C_6H_6(l))}]

where,

\Delta S^o = entropy of reaction = ?

n = number of moles

\Delta S^0_{(C_6H_6(g))} = standard entropy of formation  of gaseous benzene = 269.2 J/K.mol

\Delta S^0_{(C_6H_6(l))} = standard entropy of formation  of liquid benzene = 173.26 J/K.mol

Now put all the given values in this expression, we get:

\Delta S^o=[1mole\times (269.2J/K.mol)]-[1mole\times (173.26J/K.mol)]

\Delta S^o=95.94J/K.mol

Now we have to calculate the Gibbs free energy of reaction (\Delta G^o).

As we know that,

\Delta G^o=\Delta H^o-T\Delta S^o

At room temperature, the temperature is 25^oC\text{ or }298K.

\Delta G^o=(33890J)-(298K\times 95.94J/K)

\Delta G^o=5299.88J/mol=5.299kJ/mol

Therefore, the values of \Delta H^o,\Delta S^o\text{ and }\Delta G^o are 33.89kJ,95.94J/K\text{ and }5.299kJ/mol respectively.

You might be interested in
Gamma rays are often used to kill microorganisms in food, in an attempt to make the food safer. Some people contend that this ir
nikdorinn [45]

Answer:

b . Irradiated food is shown to not be radioactive.

Explanation:

If it can be proven that irradiated food is not radioactive, then it will effective dispute the idea that irradiated food are less safe to eat.

  • An irradiated food is one in which ionizing radiations have been employed to improve food quality.
  • Thus, bacteria and other food spoilers can be exterminated from the food.
  • Most irradiated food do not contain radiation and are fit for consumption.

If it can be proven, that this is true, then it will challenge the idea that irradiated foods are not safe.

4 0
1 year ago
If a penny is made of 3.11 grams of copper, how many atoms of copper are in the penny
Pie

Answer:

2.94x10²² atoms of Cu

Explanation:

We must work with NA to solve this, where NA is the number of Avogadro, number of particles of 1 mol of anything.

Molar mass Cu = 63.55 g/mol

Mass / Molar mass = Mol → 3.11 g / 63.55 g/m = 0.0489 moles

1 mol  of Cu has 6.02x10²³ atoms of Cu

0.0489 moles of Cu, will have (0.0489  .NA)/ 1 = 2.94x10²² atoms of Cu

8 0
2 years ago
A chemical engineer calculated that 15.0 mol H2 was needed to react with excess N2 to prepare 10.0 mol NH3. But the actual yield
rjkz [21]

Answer:

The actual number of moles is 9 moles.

It is less than 15

Number of moles needed is 9 moles

Explanation:

15H2 + 10N2 ——-> 10NH3

Now from the question, we can see that the percentage yield is 60%

The percentage yield can be calculated as actual moles of H2/Theoretical moles of H2 * 100%

From the equation, we can see that the theoretical number of moles of hydrogen is 15.

Now to get the actual : 60 = x/15 * 100

x = 9

The actual number of moles is 9 moles.

It is less than 15

Number of moles needed is 9 moles

8 0
2 years ago
How could installing new technology, such as scrubber machines, affect the factories required to install them? Name a positive a
Sindrei [870]

Answer:

Installing new technology, such as scrubbers, in factories will decrease their harmful emissions. This helps improve the safety of the surrounding community and the workers. But this technology is expensive and requires time and effort to install.

Explanation:

Hope this helped :)

5 0
2 years ago
list three sources of error that could account for the differences between your values for the enthalpy of fusion of water and t
NARA [144]

<span>Three sources of error that might account for the differences in the enthalpy of fusion include the room temperature how much’ long you stirred and another thing that might make it have different results is how long the ice was out for   </span>


3 0
2 years ago
Other questions:
  • The fuel used in many disposable lighters is liquid butane, C4H10. Butane has a molecular weight of 58.1 grams in one mole. How
    13·2 answers
  • The natural source of acidity in rain water is _____. carbonic acid sulfuric acid nitric acid all of the above
    13·2 answers
  • if the fundamental frequency of a certain string is 84 hz, what is the frequency of the second harmonic? 42 hz 84 hz 126 hz 168
    13·2 answers
  • A 30.0 g sample of a metal was heated in a hot water bath to 80°c. it was then quickly transferred to a coffee-cup calorimeter.
    15·2 answers
  • How many free ions are there on the products side of the total ionic equations that results from the reaction between bismuth 3
    10·1 answer
  • Give an example of each of the following: (a) a monatomic cation, (b) a monatomic anion, (c) a polyatomic cation,(d) a polyatomi
    6·1 answer
  • What is the mole fraction of O2O2 in a mixture of 15.1 gg of O2O2, 8.19 gg of N2N2, and 2.46 gg of H2H2
    12·1 answer
  • How many moles of CaC2 are needed to react completely with 45.0g H2O?
    14·1 answer
  • An atom of 120In has a mass of 119.907890 amu. Calculate the mass defect (deficit) in amu/atom. Use the masses: mass of 1H atom
    5·1 answer
  • Consider the energy diagram below.
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!