In this question, you are given the average cofactor mass per cell (77.91pg) and the total cells count(10^5 cells). You are asked how much cofactor that will be found from those cells(microgram= 10^6 picogram). Then the calculation would be:
Cofactor mass= cofactor per cell * cell count= 77.91pg/cell * 10^5 cells= 7.791 x 10^6pg
Then convert the picogram(pg) into microgram: 7.791x 10^6pg/ (10^6pg/microgram)= 7.791 microgram
Answer : The new pressure of the gas will be, 468.66 atm
Explanation :
Boyle's Law : This law states that pressure of the gas is inversely proportional to the volume of the gas at constant temperature and number of moles.
(At constant temperature and number of moles)
or,

where,
= initial pressure of the gas = 74 atm
= final pressure of the gas = ?
= initial volume of the gas = 190 ml
= final volume of the gas = 30 ml
Now we put all the given values in the above formula, we get the final or new pressure of the gas.


Therefore, the new pressure of the gas will be, 468.66 atm
Answer:
- mixture
- homogenous mixture (of hydrocarbons)
- compound
Explanation:
Mixture can be easily separated by physical methods. Homogeneity and heterogeneity of a mixture is determined by whether the components there in are in a single phase and evenly distributed or not.
A solution has a solute evenly dissolved in solvent to form a liquid substance.
An element is the basic form of substance which cannot be broke down into any other simpler unit.
I hope this was helpful.
The balanced equation for combustion is as follows;
2CH₃OH + 3O₂ ---> 2CO₂ + 4H₂O
The stoichiometry of CH₃OH to O₂ is 2:3
the limiting reagent is the reactant that is fully consumed during the reaction. The amount of product formed is directly proportional to the amount of limiting reactant produced. The excess reagent is the reactant that is provided in excess and is not fully used up, there will be an amount of this reagent remaining after the reaction.
If methanol is the limiting reactant,
If 2 mol of methanol reacts with 3 moles of O₂
Then 24 mol of methanol reacts with - 3/2 x 24 = 36 mol of O₂ should be present
But only 15 mol of O₂ is present, therefore O₂ is the limiting reactant and methanol is in excess.
3 mol of O₂ reacts with 2 mol of CH₃OH
then 15 mol of O₂ reacts with 2/3 x 15 = 10 mol of CH₃OH
Excess reactant is methanol, 10 mol are used up therefore 24 - 10 mol = 14 mol are remaining at the end of the reaction