Answer:
42.5 g
Explanation:
Calculate the mass of the soft drink given the density and volume:
355 mL × 1.04 g/mL = 369.2 g
Now calculate the mass of sucrose given the percentage:
0.115 × 369.2 g = 42.46 g
Rounded to 3 significant figures, the mass is 42.5 g.
<span>At standard temperature and pressure 22.4 l of an ideal gas would contain 1 mole. in order to find the change in moles we must look at the ideal gas law PV=nRT where P=Pressure V=volume n=Moles R= Gas constant T= Temperature. To simplify this equation we will be using the gas constant at .08206 L-atm/mol-K. We must first convert 100c to k which is 373.15. Then we can plug the values into our equation which gives us (2atm)(14.5 l)=(n)(.08206 L-atm/mol-K)(373.15). After some basic algebra we get the moles to equal roughly .95 which is .05 moles less than our original system.</span>
Water is the only one of these that would work by process of elimination.
If the patient has to take 2 tablets every 8 hours for 7 days.
24/8=3 3*2=6
this means that he patient will have to take 6 tablets every day.
6*7=42 And the patient must take 42 tablets in all 7 days
Hope this helps! :)