Answer:
The H+ (aq) concentration of the resulting solution is 4.1 mol/dm³
(Option C)
Explanation:
Given;
concentration of HA,
= 6.0mol/dm³
volume of HA,
= 25.0cm³, = 0.025dm³
Concentration of HB,
= 3.0mol/dm³
volume of HB,
= 45.0cm³ = 0.045dm³
To determine the H+ (aq) concentration in mol/dm³ in the resulting solution, we apply concentration formula;

where;
is initial concentration
is initial volume
is final concentration of the solution
is final volume of the solution

Therefore, the H+ (aq) concentration of the resulting solution is 4.1 mol/dm³
Answer:The formulas of ionic compounds are:
a)
b)
c)
d)
Explanation:
Formulas for the an ionic compounds is determine by:
Criss-cross method, the oxidation state of the ions gets exchanged and they form the subscripts of the other ions. This results in the formation of a neutral compound.
(a) Copper bromide :Given that it contains
ion.

(b) Manganese oxide : Given that it contains
ion.

(c)Mercury iodide :Given that it contains 

(d) Magnesium phosphate :Given that it contains 

Answer:

Explanation:
Given:
For a school event, 1/6 of the athletic field is reserved for the fifth -grade classes and the reserved part of the field is divided equally among the 4 fifth grade classes in the school.
To find: fraction of the whole athletic field reserved for each fifth class
Solution:
Fraction of the whole athletic field reserved for four fifth classes = 
So, fraction of the whole athletic field reserved for each fifth class = 
Answer:
See explanation and image attached
Explanation:
When the carbocation is formed by the action of AlCl3 on the (CH3)3CCH2Cl, a primary carbocation is formed. The formation of the carbonation is followed by a 1,2-alkyl shift to give a tertiary carbocation which subsequently adds to the benzene ring as shown in the image attached to this answer.
Answer:
1 and 3.
Explanation:
The entropy measures the randomness of the system, as higher is it, as higher is the entropy. The randomness is associated with the movement and the arrangement of the molecules. Thus, if the molecules are moving faster and are more disorganized, the randomness is greater.
So, the entropy (S) of the phases increases by:
S solid < S liquid < S gases.
1. The substance is going from solid to gas, thus the entropy is increasing.
2. The substance is going from a disorganized way (the molecules of I are disorganized) to an organized way (the molecules join together to form I2), thus the entropy is decreasing.
3. The molecules go from an organized way (the atom are joined together) to a disorganized way, thus the entropy increases.
4. The ions are disorganized and react to form a more organized molecule, thus the entropy decreases.