Answer:
(A) Power output will be 5.55 KW (b) lower temperature will be 315 K
Explanation:
We have given efficiency of heat engine
= 0.37
Input power = 15 KW
Temperature of heat reservoir 
(A) We know that 
So [text]0.37=\frac{output}{15}[text]
Output = 5.55 KW
(B) We also know that [text]\eta =1-\frac{T_L}{T_H}0.37=\frac{output}{15}[text], here
is lower temperature and
is higher temperature
So 


Answer:
quivalent force-couple system at D, (b) the resultant of the loading and its line of action.Explanation:
Answer:
The correct answer will be "400.4 N". The further explanation is given below.
Explanation:
The given values are:
Mass of truck,
m = 600 kg
g = 9.8 m/s²
On equating torques at the point O,
⇒
So that,
On putting the values, we get
⇒ 
⇒ 
Answer:
2.9*10^14 electrons
Explanation:
An Ampere is the flow of one Coulomb per second, so 35 μA = is 35*10^-6 C per second.
An electron has a charge of 1.6*10^-19 C.
35*10^-6 / 1.6*10^-19 = 2.9*10^14 electrons
So, with a current o 35 μA you have an aevrage of 2.9*10^14 electrons flowing past a fixed reference cross section perpendicular to the direction of flow.
Answer:
The answer to this question is 1273885.3 ∅
Explanation:
<em>The first step is to determine the required hydraulic flow rate liquid if working pressure and if a cylinder with a piston diameter of 100 mm is available.</em>
<em>Given that,</em>
<em>The distance = 50mm</em>
<em>The time t =10 seconds</em>
<em>The force F = 10kN</em>
<em>The piston diameter is = 100mm</em>
<em>The pressure = F/A</em>
<em> 10 * 10^3/Δ/Δ </em>
<em> P = 1273885.3503 pa</em>
<em>Then</em>
<em>Power = work/time = Force * distance /time</em>
<em> = 10 * 1000 * 0.050/10</em>
<em>which is =50 watt</em>
<em>Power =∅ΔP</em>
<em>50 = 1273885.3 ∅</em>