answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
stepan [7]
2 years ago
6

A small rock is launched straight upward from the surface of a planet with no atmosphere. The initial speed of the rock is twice

the escape speed ve of the rock from the planet. If gravitational effects from other objects are negligible, the speed of the rock at a very great distance from the planet will approach a value of _____ .
Physics
1 answer:
Scorpion4ik [409]2 years ago
4 0

If gravitational effects from other objects are negligible, the speed of the rock at a very great distance from the planet will approach a value of \sqrt{3} v_{e}

<u>Explanation:</u>

To express velocity which is too far from the planet and escape velocity by using the energy conservation, we get

Rock’s initial velocity , v_{i}=2 v_{e}. Here the radius is R, so find the escape velocity as follows,

            \frac{1}{2} m v_{e}^{2}-\frac{G M m}{R}=0

            \frac{1}{2} m v_{e}^{2}=\frac{G M m}{R}

            v_{e}^{2}=\frac{2 G M}{R}

            v_{e}=\sqrt{\frac{2 G M}{R}}

Where, M = Planet’s mass and G = constant.

From given conditions,

Surface potential energy can be expressed as,  U_{i}=-\frac{G M m}{R}

R tend to infinity when far away from the planet, so v_{f}=0

Then, kinetic energy at initial would be,

                  k_{i}=\frac{1}{2} m v_{i}^{2}=\frac{1}{2} m\left(2 v_{e}\right)^{2}

Similarly, kinetic energy at final would be,

                k_{f}=\frac{1}{2} m v_{f}^{2}

Here, v_{f}=\text { final velocity }

Now, adding potential and kinetic energies of initial and final and equating as below, find the final velocity as

                 U_{i}+k_{i}=k_{f}+v_{f}

                 \frac{1}{2} m\left(2 v_{e}\right)^{2}-\frac{G M m}{R}=\frac{1}{2} m v_{f}^{2}+0

                  \frac{1}{2} m\left(2 v_{e}\right)^{2}-\frac{G M m}{R}=\frac{1}{2} m v_{f}^{2}

'm' and \frac{1}{2} as common on both sides, so gets cancelled, we get as

                   4\left(v_{e}\right)^{2}-\frac{2 G M}{R}=v_{f}^{2}

We know, v_{e}=\sqrt{\frac{2 G M}{R}}, it can be wriiten as \left(v_{e}\right)^{2}=\frac{2 G M}{R}, we get

                4\left(v_{e}\right)^{2}-\left(v_{e}\right)^{2}=v_{f}^{2}

                v_{f}^{2}=3\left(v_{e}\right)^{2}

Taking squares out, we get,

                v_{f}=\sqrt{3} v_{e}

You might be interested in
A car is traveling at 20 meters/second and is brought to rest by applying brakes over a period of 4 seconds. What is its average
frez [133]
 (u) = 20 m/s 
(v) = 0 m/s 
<span> (t) = 4 s 
</span>
<span>0 = 20 + a(4) 

</span><span>4 x a = -20 
</span>
so, the answer is <span>-5 m/s^2. or -5 meter per second</span>
8 0
2 years ago
Read 2 more answers
Traffic officials indicate, it takes longer to ______ when you drive fast.
nignag [31]
The answer in the blank is that it is difficult to accelerate at decelerate the vehicle when it is on a fast speed because having a fast speed makes it difficult to adjust the meter as well as if you try to decelerate the vehicle, it could burn out the tires and engine as it is in the fast speed, in accelerating it, it could also be complicated because it would only make the car faster enough that you may no longer control of how to stop it.
7 0
2 years ago
Read 2 more answers
Two narrow slits spaced 100 microns apart are exposed to light of 600 nm. At what angle does the first minimum (dark space) occu
kumpel [21]

Answer:

The angle is   \theta  =  0.1719^o

Explanation:

From the question we are told that

   The  distance of separation is  d =  100 * 10^{-6} \  m

    The  wavelength of light is  \lambda  =  600 nm =  600 *10^{-9} \  m

   

Generally the condition for destructive interference is mathematically represented as

         dsin(\theta )  =[m  +  \frac{1}{2} ]\lambda

Here  m is the order of maxima,  first minimum (dark space) m = 0

 So  

      100 *10^{-6 } *  sin(\theta )  =[0  +  \frac{1}{2} ]600 *10^{-9}

=>   \theta  =  sin^{-1} [0.003]

=>   \theta  =  0.1719^o

     

7 0
2 years ago
Joe wanted to experiment with different factors that affect the freezing rate of water. He put two cups of water into each of tw
creativ13 [48]

the answer is not D ....... the answer is {B} if you got it right give me a 5 stars and a hard

7 0
2 years ago
Read 2 more answers
How would the interference pattern change for this experiment if a. the grating was moved twice as far from the screen and b. th
Airida [17]

Answer:

See explanation

Explanation:

Solution:-

- Here we will assume that the grating has the line density ( N ) defined by the number of lines per mm.

- The angle that each fringe forms on the screen is defined by ( θ ).

- The order of bright/dark spot is defined by an integer ( n )

- The wavelength of the incident light is ( λ )

- Here we will use the relation given for diffraction grating by the Young's Experiment as follows:

                               n*lambda = \frac{sin(theta)}{N}

- The above given formulation is for constructive interference.

- We will inspect the effect of increasing the distance between the screen and the grating. Consider the length ( L ) from the center of the grating to the center of the screen. The distance ( yn ) will denote the distance between each fringe in vertical direction on the screen.

- For small angles ( θ ) we can make an approximation of sin ( θ ) ≈ tan ( θ ). Where,

                            sin ( θ ) ≈ tan ( θ ) = [ yn / L ]

- Substitute the above approximation in the given relation of diffraction gratings as follows:

                            y_n = n*lamda*L*N

- To double the distance between the screen and grating we will use the above relation with ( 2L ):

                            yn ∝ L

Result: The distance between each order of bright and dark fringe is doubled. The interference pattern would have twice the spread! This also means that less number of bright spots would be seen on the screen as the coverage area would require a larger screen to accommodate the entire interference pattern. The spread also reduces the intensity/contrast between the bright and dark fringes because the distance travelled by each ray of light has increased. The intensity is inversely proportional to the square of distance travelled.

- Similarly, the line density of the grating ( N ) was doubled. Then,

                            yn ∝ N

Result: The distance between each order of bright and dark fringe is doubled. The interference pattern would have twice the spread!This also means that less number of bright spots would be seen on the screen as the coverage area would require a larger screen to accommodate the entire interference pattern.

4 0
2 years ago
Other questions:
  • A block with mass m = 7 kg is attached to two springs with spring constants kleft = 37 N/m and kright = 48 N/m. The block is pul
    9·1 answer
  • How does Coulomb's Law and electric charge cause your hair to stand on edge when it is really dry outside and you walk across th
    14·1 answer
  • A truck moving at 36 m/s passes a police car moving at 45 m/s in the opposite direction. If the frequency of the siren is 500 Hz
    12·1 answer
  • A baseball hits a car, breaking its window and triggering its alarm which sounds at a frequency of 1210 Hz. What frequency (in H
    5·1 answer
  • The blood plays an important role in removing heat from th ebody by bringing the heat directly to the surface where it can radia
    13·1 answer
  • What form of energy is a bonfire and a bunsen burner?
    11·1 answer
  • A majorette in the Rose Bowl Parade tosses a baton into the air with an initial angular velocity of 2.5 rev/s. If the baton unde
    11·1 answer
  • g A coil formed by wrapping 50 turns of wire in the shape of a square is positioned in a magnetic field so that the normal to th
    5·1 answer
  • A 30-m-long rocket train car is traveling from Los Angeles to New York at 0.5c when a light at the center of the car flashes. Wh
    6·1 answer
  • A 10 kg ball moving at 13 m/s strikes a 20 kg ball at rest. after the collision the 10 kg ball is moving with a velocity of 7m/s
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!