Answer:
Equilibrium constant of the given reaction is 
Explanation:
....
....
The given reaction can be written as summation of the following reaction-


......................................................................................

Equilibrium constant of this reaction is given as-
![\frac{[NOBr]^{2}}{[N_{2}][O_{2}][Br_{2}]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BNOBr%5D%5E%7B2%7D%7D%7B%5BN_%7B2%7D%5D%5BO_%7B2%7D%5D%5BBr_%7B2%7D%5D%7D)
![=(\frac{[NOBr]}{[NO][Br_{2}]^{\frac{1}{2}}})^{2}(\frac{[NO]^{2}}{[N_{2}][O_{2}]})](https://tex.z-dn.net/?f=%3D%28%5Cfrac%7B%5BNOBr%5D%7D%7B%5BNO%5D%5BBr_%7B2%7D%5D%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%7D%29%5E%7B2%7D%28%5Cfrac%7B%5BNO%5D%5E%7B2%7D%7D%7B%5BN_%7B2%7D%5D%5BO_%7B2%7D%5D%7D%29)


First step is to determine the valency of each of x and CaCO3 from the given compounds:
1- As for Li2CO3: we can deduce that the valency of lithium is one while that of CO3 is two
2- As for XCl3: we can deduce that the valency of chlorine is one while that of X is three
Second step is to write the required compound:
X : CO3 (elements involved)
3 : 2 (write the valency of each)
Then write the positive ion (X) followed by the valency of the negative ion (2) and then the negative ion (CO3) followed by the valency of the positive ion (3).
The final x carbonate is written as: X2(CO3)3
Answer:
d.) Microwave photons cause the molecules to increase their rotational energy states, whereas infrared photons cause electrons in the molecules to increase their electronic energy states.
Explanation:
Microwave: transitions in the molecular rotational levels
Infrared: transitions in molecular vibrational levels
UV/Visible: transitions in electronic energy levels.