Answer:
The pH of 0.1 M BH⁺ClO₄⁻ solution is <u>5.44</u>
Explanation:
Given: The base dissociation constant:
= 1 × 10⁻⁴, Concentration of salt: BH⁺ClO₄⁻ = 0.1 M
Also, water dissociation constant:
= 1 × 10⁻¹⁴
<em><u>The acid dissociation constant </u></em>(
)<em><u> for the weak acid (BH⁺) can be calculated by the equation:</u></em>

<em><u>Now, the acid dissociation reaction for the weak acid (BH⁺) and the initial concentration and concentration at equilibrium is given as:</u></em>
Reaction involved: BH⁺ + H₂O ⇌ B + H₃O+
Initial: 0.1 M x x
Change: -x +x +x
Equilibrium: 0.1 - x x x
<u>The acid dissociation constant: </u>![K_{a} = \frac{\left [B \right ] \left [H_{3}O^{+}\right ]}{\left [BH^{+} \right ]} = \frac{(x)(x)}{(0.1 - x)} = \frac{x^{2}}{0.1 - x}](https://tex.z-dn.net/?f=K_%7Ba%7D%20%3D%20%5Cfrac%7B%5Cleft%20%5BB%20%5Cright%20%5D%20%5Cleft%20%5BH_%7B3%7DO%5E%7B%2B%7D%5Cright%20%5D%7D%7B%5Cleft%20%5BBH%5E%7B%2B%7D%20%5Cright%20%5D%7D%20%3D%20%5Cfrac%7B%28x%29%28x%29%7D%7B%280.1%20-%20x%29%7D%20%3D%20%5Cfrac%7Bx%5E%7B2%7D%7D%7B0.1%20-%20x%7D)





<u>Therefore, the concentration of hydrogen ion: x = 3.6 × 10⁻⁶ M</u>
Now, pH = - ㏒ [H⁺] = - ㏒ (3.6 × 10⁻⁶ M) = 5.44
<u>Therefore, the pH of 0.1 M BH⁺ClO₄⁻ solution is 5.44</u>
Answer:
The average kinetic energy of the gas particles is greater in container B because it has a higher temperature.
Explanation:
<em>The correct option would be that the average kinetic energy of the gas particles is greater in container B because it has a higher temperature.</em>
<u>According to the kinetic theory of matter, the temperate of a substance is a measure of the average kinetic energy of the molecules of substance. In other words, the higher the temperature of a substance, the higher the average kinetic energy of the molecules of the substance.</u>
In the illustration, the gas in container B showed a higher temperature than that of container A as indicated on the thermometer, it thus means that the average kinetic energy of the molecules of gas B is higher than those of gas A.
Answer:
108.9g of Silver can be produced from 125g of Ag2S
Explanation:
The compound Ag2S shows that two atoms of Silver Ag, combined with an atom of Sulphur S to form Ag2S. We can as well say the combination ration of Silver to Sulphur is 2:1
•Now we need to calculate the molecular weight of this compound by summing up the molar masses of each element in the compound.
•Molar mass of Silver Ag= 107.9g/mol
•Molar mass of Sulphur S= 32g/mol
•Molecular weight of Ag2S= (2×107.9g/mol) + 32g/mol
•Molecular weight of Ag2S= 215.8g/mol + 32g/mol= 247.8g/mol
•From our calculations, we know that 215.8g/mol of Ag is present in 247.8g/mol of Ag2S
If 247.8g Ag2S produced 215.8g Ag
125g Ag2S will produce xg Ag
cross multiplying we have
xg= 215.8g × 125g / 247.8g
xg= 26975g/247.8
xg= 108.85g
Therefore, 108.9g of Silver can be produced from 125g of Ag2S
Answer:
T₂ = 669.2 K
Explanation:
Given data:
Initial pressure = 660 torr
Initial temperature = 26 °C (26 +273 = 299 K)
Final volume = 280 mL ( 280/1000 = 0.28 L)
Final pressure = 940.0 torr
Final volume = 0.44 L
Final temperature = ?
Formula:
P₁V₁/T₁ = P₂V₂/T₂
P₁ = Initial pressure
V₁ = Initial volume
T₁ = Initial temperature
P₂ = Final pressure
V₂ = Final volume
T₂ = Final temperature
Solution:
P₁V₁/T₁ = P₂V₂/T₂
T₂ = P₂V₂ T₁ /P₁V₁
T₂ = 940 torr × 0.44 L × 299 K / 660 torr × 0.28 L
T₂ = 123666. 4 torr. L. K / 184.8 torr. L
T₂ = 669.2 K