answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zhuklara [117]
2 years ago
11

You are asked to build an open cylindrical can (i.e. no top) that will hold 171.5 cubic inches. To do this, you will cut its bot

tom from a square of metal and form its curved side by bending a rectangular sheet of metal.(a) Express the total amount of material required for the square and the rectangle in terms of r. (b) Find the radius and height of the can that will minimize the total amount of material required

Mathematics
1 answer:
natulia [17]2 years ago
7 0

The volume of a cylinder is \pi  2^{2} h=171.5 in^{3}. From the figure, the circle inside the square makes up the base, while the lateral surface area of the cylinder is the rectangle.

In terms of r, the area of the circle from the square would be (2r)^{2} = 4r^2 since half the square's side is r and the area of a square is the square of is side.

The area of the rectangle is 2\pirh. From the equation of the cylinder's volume,

h= \frac{171.5}{\pi  r^{2}}, thus the area of rectangle is \frac{343}{r}


Add both areas, take its derivative, then equate to 0 to find the value of r:

A = 4 r^{2}+\frac{343}{r}     (This is the total amount of material required for the square and the rectangle in terms of r)

\frac{dA}{dr} = 8r+343(-1) r^{-2} =0

[8r- \frac{343}{ r^{2}}=0] r^{2}

8 r^{3}-343=0

r^{3}= \frac{343}{8}

r=3  inches, substitute this value to the equation for h in terms of r.

h= \frac{171.5}{\pi 3^{2}}

h=6.07 inches

You might be interested in
Unit 3 parallel and perpendicular lines homework 4 parallel line proofs
Alex17521 [72]

Answer:

1) c ║ d by consecutive interior angles theorem

2) m∠3 + m∠6 = 180° by transitive property

3) ∠2 ≅ ∠5 by definition of congruency

4) t ║ v                                    {}                   Corresponding angle theorem

5) ∠14 and ∠11  are supplementary         {}  Definition of supplementary angles

6) ∠8 and ∠9  are supplementary    {}        Consecutive  interior angles theorem

Step-by-step explanation:

1) Statement                                {}                                     Reason

m∠4 + m∠7 = 180°                                 {}   Given

m∠4 ≅ m∠6                                {}              Vertically opposite angles

m∠4 = m∠6                               {}                Definition of congruency

m∠6 + m∠7 = 180°                                {}    Transitive property

m∠6 and m∠7 are supplementary     {}     Definition of supplementary angles

∴ c ║ d                               {}                       Consecutive interior angles theorem

2) Statement                                {}                                     Reason

m∠3 = m∠8                                 {}           Given

m∠8 + m∠6 = 180°                {}                 Sum of angles on a straight line

∴ m∠3 + m∠6 = 180°               {}               Transitive property

3) Statement                                {}                                     Reason

p ║ q                                 {}                    Given

∠1 ≅ ∠5                               {}                  Given

∠1 = ∠5                               {}                   Definition of congruency

∠2 ≅ ∠1                               {}                  Alternate interior angles theorem

∠2 = ∠1                               {}                   Definition of congruency

∠2 = ∠5                                  {}               Transitive property

∠2 ≅ ∠5                                  {}              Definition of congruency.

4) Statement                                {}                                     Reason

∠1 ≅ ∠5                                  {}                Given

∠3 ≅ ∠4                               {}                  Given

∠1 = ∠5                               {}                   Definition of congruency

∠3 = ∠4                               {}                  Definition of congruency

∠5 ≅ ∠4                               {}                 Vertically opposite angles

∠5 = ∠4                               {}                  Definition of congruency

∠5 = ∠3                                  {}               Transitive property

∠1 = ∠3                                  {}                Transitive property

∠1 ≅ ∠3                                  {}                Definition of congruency.

t ║ v                                    {}                   Corresponding angle theorem

5) Statement                                {}                                     Reason

∠5 ≅ ∠16                                  {}              Given

∠2 ≅ ∠4                               {}                  Given

∠5 = ∠16                               {}                  Definition of congruency

∠2 = ∠4                               {}                   Definition of congruency

EF ║ GH                               {}                  Corresponding angle theorem

∠14 ≅ ∠16                               {}                Corresponding angles

∠14 = ∠16                               {}                 Definition of congruency

∠5 = ∠14                                  {}               Transitive property

∠5 + ∠11 = 180°                {}                       Sum of angles on a straight line

∠14 + ∠11 = 180°                                {}      Transitive property

∠14 and ∠11  are supplementary         {}  Definition of supplementary angles  

6) Statement                                {}                                     Reason

l ║ m                                 {}                      Given

∠4 ≅ ∠7                               {}                  Given

∠4 = ∠7                               {}                   Definition of congruency

∠2 ≅ ∠7                               {}                  Alternate angles

∠2 = ∠7                               {}                   Definition of congruency

∠2 = ∠4                                  {}               Transitive property

∠2 ≅ ∠4                               {}                  Definition of congruency

∠2 and ∠4 are corresponding angles   {} Definition

DA ║ EB                               {}                  Corresponding angle theorem

∠8 and ∠9  are consecutive  interior angles    {} Definition

∠8 and ∠9  are supplementary    {}        Consecutive  interior angles theorem.

6 0
2 years ago
Dwayne earns $11.45 per hour.Last week he worked 38 1/4 hours.how much did he earn last week?
Tcecarenko [31]

Answer:

$2,000

Step-by-step explanation:

8 0
2 years ago
Read 2 more answers
The area of a right triangle is 210 square inches. The height of the right triangle is 35 inches.
deff fn [24]
35 squared + 35 squared
rad 2450
35 rad 2
7 0
2 years ago
Read 2 more answers
Temperature can be measured in two different common units: degrees Celsius and degrees Fahrenheit.
DerKrebs [107]

Answer:

Step-by-step explanation: FF  represents the temperature in degrees Fahrenheit is equivalent to CC, the temperature in degrees Celsius.

F=32+1.8CF=32+1.8C

5 0
2 years ago
The average annual amount American households spend for daily transportation is $6312 (Money, August 2001). Assume that the amou
lions [1.4K]

Answer:

(a) The standard deviation of the amount spent is $3229.18.

(b) The probability that a household spends between $4000 and $6000 is 0.2283.

(c) The range of spending for 3% of households with the highest daily transportation cost is $12382.86 or more.

Step-by-step explanation:

We are given that the average annual amount American households spend on daily transportation is $6312 (Money, August 2001). Assume that the amount spent is normally distributed.

(a) It is stated that 5% of American households spend less than $1000 for daily transportation.

Let X = <u><em>the amount spent on daily transportation</em></u>

The z-score probability distribution for the normal distribution is given by;

                          Z  =  \frac{X-\mu}{\sigma}  ~ N(0,1)

where, \mu = average annual amount American households spend on daily transportation = $6,312

           \sigma = standard deviation

Now, 5% of American households spend less than $1000 on daily transportation means that;

                      P(X < $1,000) = 0.05

                      P( \frac{X-\mu}{\sigma} < \frac{\$1000-\$6312}{\sigma} ) = 0.05

                      P(Z < \frac{\$1000-\$6312}{\sigma} ) = 0.05

In the z-table, the critical value of z which represents the area of below 5% is given as -1.645, this means;

                           \frac{\$1000-\$6312}{\sigma}=-1.645                

                            \sigma=\frac{-\$5312}{-1.645}  = 3229.18

So, the standard deviation of the amount spent is $3229.18.

(b) The probability that a household spends between $4000 and $6000 is given by = P($4000 < X < $6000)

      P($4000 < X < $6000) = P(X < $6000) - P(X \leq $4000)

 P(X < $6000) = P( \frac{X-\mu}{\sigma} < \frac{\$6000-\$6312}{\$3229.18} ) = P(Z < -0.09) = 1 - P(Z \leq 0.09)

                                                            = 1 - 0.5359 = 0.4641

 P(X \leq $4000) = P( \frac{X-\mu}{\sigma} \leq \frac{\$4000-\$6312}{\$3229.18} ) = P(Z \leq -0.72) = 1 - P(Z < 0.72)

                                                            = 1 - 0.7642 = 0.2358  

Therefore, P($4000 < X < $6000) = 0.4641 - 0.2358 = 0.2283.

(c) The range of spending for 3% of households with the highest daily transportation cost is given by;

                    P(X > x) = 0.03   {where x is the required range}

                    P( \frac{X-\mu}{\sigma} > \frac{x-\$6312}{3229.18} ) = 0.03

                    P(Z > \frac{x-\$6312}{3229.18} ) = 0.03

In the z-table, the critical value of z which represents the area of top 3% is given as 1.88, this means;

                           \frac{x-\$6312}{3229.18}=1.88                

                         {x-\$6312}=1.88\times 3229.18  

                          x = $6312 + 6070.86 = $12382.86

So, the range of spending for 3% of households with the highest daily transportation cost is $12382.86 or more.

8 0
2 years ago
Other questions:
  • What is 1+4=5 2+5=12 3+6=21 what does 8 plus 11 equal
    6·1 answer
  • Chaucer explores the idea that appearances can be deceiving through the character of the old woman. how does this theme relate t
    10·1 answer
  • Diane has a hospital appointment. When she arrives at the hospital, the car park is nearly full. There are a total of 534 car pa
    6·1 answer
  • Which point can be used to create a right triangle that has ab as it’s hypotenuse?
    5·2 answers
  • A biologist tranquilizes 400 wild elephants and measures the lengths of their tusks to determine their ages. Identify the popula
    7·2 answers
  • A square is constructed on side AD of quadrilateral ABCD such that FA lies on AB, as shown in the figure.
    13·2 answers
  • The graph of the parent function f(x) = x3 is transformed such that g(x) = f(–2x). How does the graph of g(x) compare to the gra
    12·2 answers
  • Define a function sinc(x) (pronounced "sink of x") by: text(sinc)(x)={(sin(x)/x text(if)\ x != 0, 1 text(if)\ x = 0.) (This func
    12·1 answer
  • triangle rst is congruent with VST is shown. given Line st is the perpendicular bisector of line RV prove triangle rst is congru
    13·2 answers
  • Five students divided 74 base-ten rods equally among them. how many base-ten rods were left over?
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!