Answer:
388,800 ft^2.
Step-by-step explanation:
Scale = 1 : 180
Actual length, Ls = 180 × 4
= 720 ft
Actual width, Bs = 180 × 3
= 540 ft
Area of a rectangle = Ls × Bs
= 540 × 720
= 388,800 ft^2.
Answer:
The following are the answer to this question:
Step-by-step explanation:
In the given question the numeric value is missing which is defined in the attached file please fine it.
Calculating the probability of the distribution for x:

The formula for calculating the mean value:




use formula for calculating the Variance:
![\to \bold{\text{Variance}= E(X^2) -[E(X)]^2}](https://tex.z-dn.net/?f=%5Cto%20%5Cbold%7B%5Ctext%7BVariance%7D%3D%20E%28X%5E2%29%20-%5BE%28X%29%5D%5E2%7D)

calculating the value of standard deivation:
Standard Deivation (SD) =

Answer:

Step-by-step explanation:
The central angle of the sector representing rent expenses in the pie chart is found by simple rule of three:


Two figures are similar if one is the scaled version of the other.
This is always the case for circles, because their geometry is fixed, and you can't modify it in anyway, otherwise it wouldn't be a circle anymore.
To be more precise, you only need two steps to prove that every two circles are similar:
- Translate one of the two circles so that they have the same center
- Scale the inner circle (for example) unit it has the same radius of the outer one. You can obviously shrink the outer one as well
Now the two circles have the same center and the same radius, and thus they are the same. We just proved that any two circles can be reduced to be the same circle using only translations and scaling, which generate similar shapes.
Recapping, we have:
- Start with circle X and radius r
- Translate it so that it has the same center as circle Y. This new circle, say X', is similar to the first one, because you only translated it.
- Scale the radius of circle X' until it becomes
. This new circle, say X'', is similar to X' because you only scaled it
So, we passed from X to X' to X'', and they are all similar to each other, and in the end we have X''=Y, which ends the proof.