Answer:
Thus, when the volume of the gas is exposed to a temperature above -273.15 K, the volume increases linearly with the temperature.
Explanation:
The expression for Charles's Law is shown below:

This states that the volume of the gas is directly proportional to the absolute temperature keeping the pressure conditions and the moles of the gas constant.
<u>Thus, when the volume of the gas is exposed to a temperature above -273.15 K, the volume increases linearly with the temperature. </u>
<u>For example , if the temperature of the gas is reduced to half, the volume also reduced to half. </u>
<u>At -273.15 K, according to Charles's law, it is possible to make the volume of an ideal gas = 0.</u>
Answer:
Conduct electricity when they are molten, while covalent compounds usually do not conduct electricity when they are molten.
Water is the only one of these that would work by process of elimination.
Answer:
Option D is correct.
H₂O + CO₂ → H₂CO₃
Explanation:
First of all we will get to know what law of conservation of mass states.
According to this law, mass can neither be created nor destroyed in a chemical equation.
This law was given by French chemist Antoine Lavoisier in 1789. According to this law mass of reactant and mass of product must be equal, because masses are not created or destroyed in a chemical reaction.
Example:
6CO₂ + 6H₂O + energy → C₆H₁₂O₆ + 6O₂
there are six carbon atoms, eighteen oxygen atoms and twelve hydrogen atoms on the both side of equation so this reaction followed the law of conservation of mass.
Now we will apply this law to given chemical equations:
A) H₂ + O₂ → H₂O
There are two hydrogen and two oxygen atoms present on left side while on right side only one oxygen and two hydrogen atoms are present so mass in not conserved. This equation not follow the law of conservation of mass.
B) Mg + HCl → H₂ + MgCl₂
In this equation one Mg, one H and one Cl atoms are present on left side while on right side two hydrogen, one Mg and two chlorine atoms are present. This equation also not follow the law of conservation of mass.
C) KClO₃ → KCl + O₂
There are one K, one Cl and three O atoms are present on left side of chemical equation while on right side one K one Cl and two oxygen atoms are present. This equation also not following the law of conservation of mass.
D) H₂O + CO₂ → H₂CO₃
There are two hydrogen, one carbon and three oxygen atoms are present on both side of equation thus, mass remain conserved. Thus is correct option.
Answer:
<em>3.27·10²³ atoms of O</em>
Explanation:
To figure out the amount of oxygen atoms in this sample, we must first evaluate the sample.
The chemical formula for sodium sulfate is <em>Na₂SO₄, </em>and its molar mass is approximately 142.05
.
We will use stoichiometry to convert from our mass of <em>Na₂SO₄ </em>to moles of <em>Na₂SO₄</em>, and then from moles of <em>Na₂SO₄ </em>to moles of <em>O </em>using the mole ratio; then finally, we will convert from moles of <em>O </em>to atoms of <em>O </em>using Avogadro's constant.
19.3g <em>Na₂SO₄</em> ·
·
·
After doing the math for this dimensional analysis, you should get a quantity of approximately <em>3.27·10²³ atoms of O</em>.