answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Gennadij [26K]
2 years ago
12

Infrared spectroscopy is a useful tool for scientists who want to investigate the structure of certain molecules. Which of the f

ollowing best explains what can occur as the result of a molecule absorbing a photon of infrared radiation? The energies of infrared photons are in the same range as the energies associated with changes between different electronic energy states in atoms and molecules. Molecules can absorb infrared photons of characteristic wavelengths, thus revealing the energies of electronic transitions within the molecules. A The energies of infrared photons are in the same range as the energies associated with different vibrational states of chemical bonds. Molecules can absorb infrared photons of characteristic wavelengths, thus revealing the types and strengths of different bonds in the molecules. B The energies of infrared photons are in the same range as the energies associated with different rotational states of molecules. Molecules can absorb infrared photons of characteristic wavelengths, thus revealing the energies of transition between different rotational energy states of the molecules. C The energies of infrared photons are in the same range as the total bond energies of bonds within molecules. Chemical bonds can be completely broken as they absorb infrared photons of characteristic wavelengths, thus revealing the energies of the bonds within the molecules.
Chemistry
1 answer:
gavmur [86]2 years ago
4 0

Answer:The energies of infrared photons are in the same range as the energies associated with different vibrational states of chemical bonds. Molecules can absorb infrared photons of characteristic wavelengths, thus revealing the types and strengths of different bonds in the molecules.

Explanation:

Infrared spectroscopy measures the vibrational energy levels in a molecule. When a molecule absorbs Infrared photons, the chemical bonds vibrate at different frequency. An analysis of the changes in vibrational energy within a molecule can be used to ascertain the different kinds of bond and hence the overall structure of the molecule. The vibrational modes of a molecule includes; bending, stretching and scissoring.

You might be interested in
Given these reactions, where X represents a generic metal or metalloid 1) H2(g)+12O2(g)⟶H2O(g)ΔH1=−241.8 kJ 1) H2(g)+12O2(g)⟶H2O
Bond [772]

Answer:

ΔH = -793,6 kJ

Explanation:

It is possible to obtain ΔH of this reaction using Hess's law that says you can sum the half-reactions ΔH to obtain the ΔH of the global reaction:

If half-reactions are:

1) H₂(g) + ¹/₂O₂(g) ⟶ H₂O(g) ΔH₁ = −241.8 kJ

2) X(s) + 2Cl₂(g) ⟶ XCl₄(s) ΔH₂ = +356.9 kJ  

3) ¹/₂H₂(g) + ¹/₂Cl₂(g) ⟶ HCl(g) ΔH₃ = −92.3 kJ

4) X(s) + O₂(g) ⟶ XO₂(s) ΔH₄ = −639.1 kJ

5) H₂O(g) ⟶ H₂O(l) ΔH₅ = −44.0 kJ

The sum of (4) + 4×(3) - (2) - 2×(1) - 2×(5) is:

(4) X(s) + O₂(g) ⟶ XO₂(s) ΔH = −639.1 kJ

+4×(3) 2H₂(g) + 2Cl₂(g) ⟶ 4HCl(g) ΔH = −369,2 kJ

-(2) XCl₄(s) ⟶ X(s) + 2Cl₂(g) ΔH = -356,9 kJ

-2×(1) 2H₂O(g) ⟶ 2H₂(g) + O₂(g) ΔH = +483,6 kJ

-2×(5) 2H₂O(l) ⟶ 2H₂O(g) ΔH = +88.0 kJ

= <em>XCl₄(s) + 2H₂O(l) ⟶ XO₂(s) + 4HCl(g)</em>

Where ΔH is:

ΔH = -639,1 kJ -369,2 kJ -356,9 kJ +483,6 kJ +88,0 kJ

<em>ΔH = -793,6 kJ</em>

I hope it helps!

5 0
2 years ago
Ammonia gas is compressed from 21°C and 200 kPa to 1000 kPa in an adiabatic compressor with an efficiency of 0.82. Estimate the
Evgen [1.6K]

Explanation:

It is known that efficiency is denoted by \eta.

The given data is as follows.

     \eta = 0.82,       T_{1} = (21 + 273) K = 294 K

     P_{1} = 200 kPa,     P_{2} = 1000 kPa

Therefore, calculate the final temperature as follows.

         \eta = \frac{T_{2} - T_{1}}{T_{2}}    

         0.82 = \frac{T_{2} - 294 K}{T_{2}}    

          T_{2} = 1633 K

Final temperature in degree celsius = (1633 - 273)^{o}C

                                                            = 1360^{o}C

Now, we will calculate the entropy as follows.

       \Delta S = nC_{v} ln \frac{T_{2}}{T_{1}} + nR ln \frac{P_{1}}{P_{2}}

For 1 mole,  \Delta S = C_{v} ln \frac{T_{2}}{T_{1}} + R ln \frac{P_{1}}{P_{2}}

It is known that for NH_{3} the value of C_{v} = 0.028 kJ/mol.

Therefore, putting the given values into the above formula as follows.

     \Delta S = C_{v} ln \frac{T_{2}}{T_{1}} + R ln \frac{P_{1}}{P_{2}}

                = 0.028 kJ/mol \times ln \frac{1633}{294} + 8.314 \times 10^{-3} kJ \times ln \frac{200}{1000}

                = 0.0346 kJ/mol

or,             = 34.6 J/mol             (as 1 kJ = 1000 J)

Therefore, entropy change of ammonia is 34.6 J/mol.

3 0
2 years ago
When C2H5Cl(g) is burned in oxygen, chlorine gas is produced in addition to carbon dioxide and water vapor. 5145 kJ of heat are
Arisa [49]

<u>Answer:</u> The chemical equation is written below.

<u>Explanation:</u>

Combustion reaction is defined as the chemical reaction in which a hydrocarbon reacts with oxygen gas to produce carbon dioxide gas and water molecule.

\text{hydrocarbon}+O_2\rightarrow CO_2+H_2O

The chemical equation for the combustion of ethyl chloride follows:

4C_2H_5Cl+13O_2\rightarrow 2Cl_2+8CO_2+10H_2O

We are given:

When 4 moles of ethyl chloride is burnt, 5145 kJ of heat is released.

For an endothermic reaction, heat is getting absorbed during a chemical reaction and is written on the reactant side.

A+\text{heat}\rightleftharpoons B

For an exothermic reaction, heat is getting released during a chemical reaction and is written on the product side

A\rightleftharpoons B+\text{heat}

So, the chemical equation follows:

4C_2H_5Cl+13O_2\rightarrow 2Cl_2+8CO_2+10H_2O+5145kJ

Hence, the chemical equation is written above.

7 0
2 years ago
In a chemical reaction that takes place at a fixed pressure and volume, the enthalpy change (ΔH) is –585 kJ/mol. Will this react
Molodets [167]

by sign convention ΔH is negative it means an exothermic reaction where the heat is lose so the temperature decreases.

5 0
2 years ago
Read 2 more answers
a gas sample is heated from -20.0 C to 57.0 C and the volume is increased from 2.00L to 4.50L. If the initial pressure is 0.109a
Andreas93 [3]
Idk what this is im not good at this 
7 0
2 years ago
Other questions:
  • Question 1(Multiple Choice Worth 3 points)
    13·1 answer
  • Hydrogen gas reacts rapidly with oxygen gas in the presence of a platinum catalyst. Which equation correctly represents this
    13·2 answers
  • Identify from the following list of molecules and ions which behave as Lewis acids: CO2, NH3, BCl3, Fe3+. (A) CO2 and NH3 (B) NH
    5·1 answer
  • 86.1 g of nitrogen reacts with lithium, how many grams of lithium will react?
    13·1 answer
  • The next two questions provide some more practice on calculations using half-lives. The isotope 64Cu has t1/2 of 12.7 hours. If
    15·1 answer
  • Write the balanced equation for each of the following changes and identify whether heat is a product or needed to start the reac
    14·1 answer
  • Aspirin synthesis involves the addition of an acetyl group to salicylic acid in a condensation reaction with an alcohol. The ace
    8·1 answer
  • What is the molarity of a HNO3 solution prepared by adding 290.7 mL of water to 350.0 mL of 12.3 M HNO3?
    8·1 answer
  • Cl2 and N2 react according to the following equation 3Cl2(g) + N2(g) rightarrow 2NCl3(g) If 4 L of a stoichiometric mixture of c
    11·1 answer
  • What percentage of the 20.0 g sample does sugar (sucrose) represent?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!