answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
VikaD [51]
2 years ago
6

A thermometer having first-order dynamics with a time constant of 1 min is placed in a temperature bath at 100oF. After the ther

mometer reaches steady state, it is suddenly placed in a bath at 110oF at t = 0 and left there for 1 min, after which it is immediately returned to the bath at 100oF.(a) Plot the variation of the thermometer reading with time (No hand-sketched plot please).(b) Calculate the thermometer reading at t = 0.5 min and at t = 2.0 min.

Chemistry
1 answer:
sveticcg [70]2 years ago
6 0

Answer:

(a) See below

(b) 103.935 °F; 102.235 °F

Explanation:

The equation relating the temperature to time is

T = T_{0} + \Delta T\left (1 - e^{-t/\tau} \right )

1. Calculate the thermometer readings after  0.5 min and 1 min

(a) After 0.5 min

\begin{array}{rcl}T & = & T_{0} + \Delta T\left (1 - e^{-t/\tau} \right )\\ & = & 100 + 10\left (1 - e^{-0.5/1} \right )\\ & = & 100 + 10\left (1 - e^{-0.5} \right )\\ & = & 100 + 10 (1 - 0.6065)\\ & = & 100 + 10(0.3935)\\ & = & 100 + 3.935\\ & = & 103.935\,^{\circ}F\\\end{array}

(b) After 1 min

\begin{array}{rcl}T & = & T_{0} + \Delta T\left (1 - e^{-t/\tau} \right )\\ & = & 100 + 10\left (1 - e^{-1/1} \right )\\ & = & 100 + 10\left (1 - e^{-1} \right )\\ & = & 100 + 10 (1 - 0.3679)\\ & = & 100 + 10(0.6321)\\ & = & 100 + 6.321\\ & = & 106.321\,^{\circ}F\\\end{array}

2. Calculate the thermometer reading after 2.0 min

T₀ =106.321 °F

ΔT = 100 - 106.321 °F = -6.321 °F

  t = t - 1, because the cooling starts 1 min late

\begin{array}{rcl}T & = & T_{0} + \Delta T\left (1 - e^{-(t - 1)/\tau} \right )\\ & = & 106.321 - 6.321\left (1 - e^{-(2 - 1)/1} \right )\\ & = & 106.321 - 6.321\left (1 - e^{-1} \right )\\ & = & 106.321 - 6.321 (1 - 0.3679)\\ & = & 106.321 - 6.321 (0.6321)\\ & = & 106.321 - 3.996\\ & = & 102.325\,^{\circ}F\\\end{array}

3. Plot the temperature readings as a function of time.

The graphs are shown below.

You might be interested in
A 200.-milliliter sample of CO2(g) is placed in a sealed, rigid cylinder with a movable piston at 296 K and 101.3 kPa. Determine
bagirrra123 [75]

Answer:

The final volume of the sample of gas V_{2} = 0.000151 m^{3}

Explanation:

Initial volume V_{1} = 200 ml = 0.0002 m^{3}

Initial temperature T_{1} = 296 K

Initial pressure P_{1} = 101.3 K pa

Final temperature T_{2} = 336 K

Final pressure P_{2} =  K pa

Relation between P , V & T is given by

P_{1} \frac{V_{1} }{T_{1} } = P_{2} \frac{V_{2} }{T_{2} }

Put all the values in the above equation we get

101.3 (\frac{0.0002}{296} )= 152 (\frac{V_{2} }{336} )

V_{2} = 0.000151 m^{3}

This is the final volume of the sample of gas.

4 0
2 years ago
Calculate ΔG o for the following reaction at 25°C: 3Mg(s) + 2Al3+(aq) ⇌ 3Mg2+(aq) + 2Al(s) Enter your answer in scientific notat
larisa [96]

Answer:

-3.7771 × 10² kJ/mol

Explanation:

Let's consider the following equation.

3 Mg(s) + 2 Al³⁺(aq) ⇌ 3 Mg²⁺(aq) + 2 Al(s)

We can calculate the standard Gibbs free energy (ΔG°) using the following expression.

ΔG° = ∑np . ΔG°f(p) - ∑nr . ΔG°f(r)

where,

n: moles

ΔG°f(): standard Gibbs free energy of formation

p: products

r: reactants

ΔG° = 3 mol × ΔG°f(Mg²⁺(aq)) + 2 mol × ΔG°f(Al(s)) - 3 mol × ΔG°f(Mg(s)) - 2 mol × ΔG°f(Al³⁺(aq))

ΔG° = 3 mol × (-456.35 kJ/mol) + 2 mol × 0 kJ/mol - 3 mol × 0 kJ/mol - 2 mol × (-495.67 kJ/mol)

ΔG° = -377.71 kJ = -3.7771 × 10² kJ

This is the standard Gibbs free energy per mole of reaction.

5 0
2 years ago
In an ionic bond:
inna [77]
Correct answer is 
<span>D. One atom accepts electrons from another.</span>
8 0
2 years ago
Read 2 more answers
An unknown compound melting at 131 - 133 C. It is thought to be one of the following compounds: trans-cinnamic acid (133-134); b
Vesnalui [34]

Answer:

benzamide

Explanation:

Compound            melting Point ,ºC          Melting Pont Mixture, ºC

       X                          131 - 133

trans-cinnamic            133 - 134                      110 - 120

acid

benzamide                 128 - 130                       130-132

malic acid                   131   -133                        114 -124

Benzoin                      135 - 137                        108 - 116

The compound X is benzamide since the melting point range is the one closest to this compound (  130-132 ºC)

The reason there is not an exact match is not due due to the presence of impurities. The presence of impurities always lower the melting point ( it is a coligative property such as the melting point depresion of salt and water )

The reason for the deviation must be  be some other factors such as preparation of the sample in the capillary, errors in reading the thermometer, rate of heating, etc.

5 0
2 years ago
Describe how you would prepare exactly 100 mL of 0.109 M picolinate buffer, pH 5.61. Possible starting materials are pure picoli
Pepsi [2]

Answer:

1.342g of picolinic acid and 6.743mL of 1.0M NaOH diluting the mixture to 100.0mL

Explanation:

<em>The pKa of the picolinic acid is 5.4.</em>

Using Henderson-Hasselbalch formula for picolinic-picolinate buffer:

pH = pKa + log [Picolinate] / [Picolinic]

<em>Where [] could be taken as moles of each species</em>

<em />

5.61 = 5.4 + log [Picolinate] / [Picolinic]

0.21 = log [Picolinate] / [Picolinic]

1.62181 = [Picolinate] / [Picolinic] <em>(1)</em>

<em></em>

Now, both picolinate and picolinic acid will be:

0.100L * (0.109mol / L) =

0.0109 moles = [Picolinate] + [Picolinic] <em>(2)</em>

<em></em>

First, as we will start with picolinic acid, we need add:

0.0109 moles picolinic acid * (123.10g/mol) = 1.342g of picolinic acid

Now, replacing (2) in (1):

1.62181 = 0.0109 moles - [Picolinic] / [Picolinic]

1.62181 [Picolinic] = 0.0109 moles - [Picolinic]

2.62181 [Picolinic] = 0.0109 moles

[Picolinic] = 4.157x10⁻³ moles

And:

[Picolinate] = 0.0109 - 4.157x10⁻³ moles =

<h3>6.743x10⁻³ moles</h3><h3 />

To obtain these moles of picolinate ion we need to make the reaction of the picolinic acid with NaOH:

Picolinic acid + NaOH → Picolinate + Water

<em>That means to obtain 6.743x10⁻³ moles of picolinate ion we need to add 6.743x10⁻³ moles of NaOH</em>

<em />

6.743x10⁻³ moles of NaOH that is 1.0M are, in mL:

6.743x10⁻³ moles * (1L / 1mol) = 6.743x10⁻³L * 1000 =

<h3>6.743mL of the 1.0M NaOH must be added</h3><h3 />

Thus, we obtain the desire moles of picolinate and picolinic acid to obtain the buffer we want, the last step is:

<h3>Dilute the mixture to 100mL, the volume we need to prepare</h3>
3 0
2 years ago
Other questions:
  • 26 Which substance is an electrolyte?(1) C6H12O6(s) (3) NaOH(s)(2) C2H5OH(L) (4) H2(g)
    7·2 answers
  • 28 ml of 0.10 m hcl is added to 60 ml of 0.10 m sr(oh)2. determine the concentration of oh− in the resulting solution.
    6·2 answers
  • Explain why the actual electron configurations of 2-7-1-1 represents a sodium in an excited state
    10·1 answer
  • Determine the volume of hexane that contains 5.33 × 1022 molecules of hexane. The density of hexane is 0.6548 g/ml and its molar
    10·1 answer
  • CuSO4 absorbs light strongly at a wavelength of 635 nm. Consider that you measure the initial intensity of light, Io, entering t
    5·1 answer
  • Mendeleev placed thallium (Tl) in the same group as lithium (Li), sodium (Na), potassium (K), rubidium (Rb), and cesium (Cs). Ho
    11·1 answer
  • A gas balloon has a volume of 80.0 mL at 300K , and a pressure of 50.0 kPa. if the pressure changes to 80.0 kPa and the temperat
    14·1 answer
  • Notice that the effective analytical connection for analysis of hypochlorite anion by the thiosulfate anion in this experiment i
    9·1 answer
  • Prisms separate ________ light, such as that from the Sun, by wavelength. Which best completes the statement? ultraviolet white
    10·1 answer
  • A compound containing Na, C, and O is found to have 1.06 mol Na, 0.528 mol C, and 1.59 mol O. What is the empirical formula of t
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!