Answer:
![\frac{\sqrt[3]{16y^4}}{x^2}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%5B3%5D%7B16y%5E4%7D%7D%7Bx%5E2%7D)
Step-by-step explanation:
The options are missing; However, I'll simplify the given expression.
Given
![\frac{\sqrt[3]{32x^3y^6}}{\sqrt[3]{2x^9y^2} }](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%5B3%5D%7B32x%5E3y%5E6%7D%7D%7B%5Csqrt%5B3%5D%7B2x%5E9y%5E2%7D%20%7D)
Required
Write Equivalent Expression
To solve this expression, we'll make use of laws of indices throughout.
From laws of indices ![\sqrt[n]{a} = a^{\frac{1}{n}}](https://tex.z-dn.net/?f=%5Csqrt%5Bn%5D%7Ba%7D%20%20%3D%20a%5E%7B%5Cfrac%7B1%7D%7Bn%7D%7D)
So,
gives

Also from laws of indices

So, the above expression can be further simplified to

Multiply the exponents gives

Substitute
for 32


From laws of indices

This law can be applied to the expression above;
becomes

Solve exponents


From laws of indices,
; So,
gives

The expression at the numerator can be combined to give

Lastly, From laws of indices,
; So,
becomes
![\frac{\sqrt[3]{(2y)}^{4}}{x^2}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%5B3%5D%7B%282y%29%7D%5E%7B4%7D%7D%7Bx%5E2%7D)
![\frac{\sqrt[3]{16y^4}}{x^2}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%5B3%5D%7B16y%5E4%7D%7D%7Bx%5E2%7D)
Hence,
is equivalent to ![\frac{\sqrt[3]{16y^4}}{x^2}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%5B3%5D%7B16y%5E4%7D%7D%7Bx%5E2%7D)
Answer:
-48.9582
Step-by-step explanation:
Negative times a positive is negative.
Answer:
Range = [- 2.5, 0.5] = [ - 5/2, 1/2]
Step-by-step explanation:
Smallest value of cos α = - 1,
largest value of cos α = 1.
When cos 4x = - 1, y=3/2cos4x-1 = 3/2*(-1) - 1 = - 5/2 = - 2 1/2 = - 2.5
When cos 4x = 1, y=3/2cos4x-1 = 3/2*1 - 1 = 1/2 = 0.5
Range = [- 2.5, 0.5] = [ - 5/2, 1/2]
Answer:
0.96%
Step-by-step explanation:
look on google and search dollar times it helps with problems like this
hope this helps
Answer:
We need to solve for the 4th side
4th side base = 75.5 -60.5 = 10 feet
4th side height = 16
4th side LENGTH^2 = 10^2 + 16^2
4th side = sq root (356) = 18.8679622641
Trapezoid Area = [(sum of the bases) / 2 ] * height
Trapezoid Area = [(136)/2] * 16
Trapezoid Area = 1,088 square feet, which is MUCH smaller
than 73,084
Step-by-step explanation: