answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
WINSTONCH [101]
2 years ago
10

A solid cylinder is radiating power. It has a length that is ten times its radius. It is cut into a number of smaller cylinders,

each of which has the same radius. Each small cylinder has the same temperature as the original cylinder. The total radiant power emitted by the pieces is twice that emitted by the original cylinder. How many smaller cylinders are there? Give your answer as a number with no units.
Physics
1 answer:
S_A_V [24]2 years ago
3 0

Answer:

The total number of small cylinder = 7.

Explanation:

Lets take

Radius of the large cylinder = R

length = L

L = 10 R

The total area A = 2 π R² + π R L

The length of the small cylinder = l

The number of small cylinder = n

L = n l

The total area of small cylinders

A'=n (2 π R² + π R l)

As we know that emissive power given as

P = A ε σ T⁴

For large cylinder

P = A ε σ T⁴      -----------1

For small cylinders

P'=A' ε σ T⁴    ------2

From 1 and 2

Given that

P'= 2 P

A' ε σ T⁴ =2 A ε σ T⁴

A'=2 A       (All others are constant)

n (2 π R² + π R l) =(2 2 π R² + π R L)

n (2  R² +  R l) = (2  R² +  R L)

n(2R^2+R\times \dfrac{L}{n}) = 2(2R^2+RL)

L = 10 R

n(2R^2+R\times \dfrac{10R}{n}) =2 (2R^2+R\times 10R)

n(2+\dfrac{10}{n}) =2( 2+ 10)

2 n +10 = 2 x 12

2 n +10 = 24

2 n = 24 -10

2 n = 14

n = 7

The total number of small cylinder = 7.

You might be interested in
A mover hoists a 50 kg box from the ground to a height of 2 m. What was the change in the box's energy
SSSSS [86.1K]

Answer:

980 J

Explanation:

The change in box's energy is equal to its change in gravitational potential energy:

\Delta U = m g \Delta h

where

m = 50 kg is the mass of the box

g = 9.8 m/s^2 is the acceleration due to gravity

\Delta h= 2m is the change in height of the box

Substituting numbers, we find

\Delta U = (50 kg)(9.8 m/s^2)(2 m)=980 J

3 0
2 years ago
A visitor to the observation deck of a skyscraper manages to drop a penny over the edge. As the penny falls faster, the force du
pentagon [3]
If a coin is dropped at a relatively low altitude, it's acceleration remains constant. However, if the coin is dropped at a very high altitude, air resistance will have a significant effect. The initial acceleration of the coin will be the greatest. As it falls down, air resistance will counteract the weight of the coin. So, the acceleration will decrease. Although the acceleration decreases, the coin still accelerates, that is why it falls faster. When the air resistance fully counters the weight of the coin, the acceleration will become zero and the coin will fall at a constant speed (terminal velocity). So, the answer should be, The acceleration decreases until it reaches 0. The closest answer is.
a. The acceleration decreases.
8 0
2 years ago
Read 2 more answers
At 1 atm pressure, the heat of sublimation of gallium is 277 kj/mol and the heat of vaporization is 271 kj/mol. to the correct n
Andreyy89
Below are the choices that can be found elsewhere:

 a. 268 kJ 
<span>b. 271 kJ </span>
<span>c. 9 kJ </span>
<span>d. 6 kJ
</span>
So the key thing to realize here is what the information given to you actually means. Sublimation is going from a sold to a gas. Vaporization is going from a liquid to a gas. Hence you can create two equations from the information that you have: 

<span>Ga (s) --> Ga (g) delta H = 277 kJ/mol </span>

<span>Ga (l) --> Ga (g) delta H = 271 kJ/mol </span>

<span>From these two equations, you can then infer how to get the melting equation be simply finding the difference between the sublimation (two steps) and vaporization (one step). </span>

<span>Ga (s) --> Ga (l) delta H = 6 kJ/mol </span>

<span>At this point, all you need to do is a bit of stoichiometry. You start with 1.50 mol and multiply by the amount of energy per mole (6 kJ/mol). </span>

<span>*ANSWER* </span>
<span>9 kJ/mol (C)</span>
7 0
2 years ago
Richard needs to fly from san diego to halifax, nova scotia and back in order to give an important talk about mathematics. on th
kondor19780726 [428]

When plane is going towards Halifax the speed of wind is in the direction of fly

so overall the net speed of the plane will increase

while when he is on the way back the air is opposite to flight so net speed will decrease

now the total time of the journey is 13 hours

out of this 2 hours he spent in mathematics talk

so total time of the fly is 13 - 2 = 11 hours

now we have formula to find the time to travel to Halinex

t_1 = \frac{d}{v + 50}

time taken to reach back

t_2 = \frac{d}{v - 50}

now we have total time

T = t_1 + t_2

11 = \frac{d}{v - 50} + \frac{d}{v + 50}

here d= 3000 miles

11 = \frac{3000}{v - 50} + \frac{3000}{v + 50}

3.67 * 10^{-3} = \frac{2v}{v^2 - 2500}

v^2 - 2500 = 545.45v

solving above quadratic equation we will have

v = 550 mph

so speed of plane will be 550 mph

3 0
2 years ago
Read 2 more answers
A charge of uniform volume density (40 nC/m3) fills a cube with 8.0-cm edges. What is the total electric flux through the surfac
GREYUIT [131]

Answer:

The flux through the surface of the cube is 2.314\ Nm^{2}/C

Solution:

As per the question:

Edge of the cube, a = 8.0 cm = 8.0\times 10^{- 2}\ m

Volume Charge density, \rho_{v} = 40 nC/m^{3} = 40\times {- 9}\ C/m^{3}

Now,

To calculate the electric flux:

\phi = \frac{q}{\epsilon_{o}}                                                      (1)

where

\phi = electric flux

\epsilon_{o} = 8.85\times 10^{- 12}\ F/m = permittivity of free space  

Volume Charge density for the given case is given by the formula:

\rho_{v} = \frac{Total\ charge, q}{Volume of cube, V}                  (2)

Volume of cube, V = a^{3}

Thus

V = (8.0\times 10^{- 2})^{3} = 5.12\times 10^{- 4}\ m^{3}

Thus from eqn (2), the total charge is given by:

q = \rho_{v}V = 40\times {- 9}\times 5.12\times 10^{- 4}

q = 2.048\times 10^{-11}\ F = 20.48\ pF

Now, substitute the value of 'q' in eqn (1):

\phi = \frac{2.048\times 10^{-11}}{8.85\times 10^{- 12}} = 2.314\ Nm^{2}/C

5 0
2 years ago
Other questions:
  • A force of 20 N acts on a rocket for 350 s, causing the rocket's velocity to increase. Calculate the impulse of the force and by
    7·1 answer
  • ) a 1.0 kilogram laboratory cart moving with a velocity of 0.50 meter per second due east collides with and sticks to a similar
    14·2 answers
  • A person walks 5.0kilometers north, then 5.0 kilometers east. His displacement is closest to ? A. 10 kilometers northwest B. 7.1
    7·1 answer
  • A 28-kg particle exerts a gravitational force of 8.3 x 10^-9 N on a particle of mass m, which is 3.2 m away. What is m? A) 140 k
    6·1 answer
  • It is initiated by the pressure gradient force. b. It blows from regions of high pressure to regions of low pressure. c. The dir
    14·1 answer
  • Short wavelengths, from high-pitched sounds, cause displacement of the basilar membrane near the oval window. true false
    15·2 answers
  • Einstein and Lorentz, being avid tennis players, play a fast-paced game on a court where they stand 20.0 m from each other. Bein
    15·1 answer
  • Consider three starships that pass by an observer on Earth. Starship A is traveling at speed v=c/3v=c/3 relative to Earth and ha
    13·1 answer
  • A solid cube of edge length r, a solid sphere of radius r, and a solid hemisphere of radius r, all made of the same material, ar
    9·1 answer
  • Two students are discussing how the speed of the car compares to the speed of the truck when both vehicles are in front of the h
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!