Explanation:
Given that,
Initial speed of the electron, 
Distance, s = 5 cm = 0.05 cm
Acceleration of the electron,
(a) Let v is the electron's velocity when it emerges from this region. It can be calculated as :


v = 871779.788 m/s
or

(b) Let t is the time for which the electron take to cross the region. It can be calculated as:



Hence, this is the required solution.
Explanation :
The interaction between two objects is termed as the collision. The collision can be of two types i.e. elastic collision and inelastic collision.
In this case, two identical carts travel at the same speed toward each other, and then a collision occurs. In an inelastic collision, the momentum before and after the collision remains the same but its kinetic energy gets lost.
After the collision, both the object sticks over each other and moves with one velocity.
Out of the given graph, the graph that shows a perfectly inelastic collision is attached. It shows that after the collision both the carts move with the same velocity.
Answer:
980 kJ
Explanation:
Work = change in energy
W = mgh
W = (1000 kg/m³ × 5.0 m³) (9.8 m/s²) (20 m)
W = 980,000 J
W = 980 kJ
The pump does 980 kJ of work.
Using the a=vf-vi divided by tf-ti:
A is acceleration
Vf is final velocity- 330
Vi is intial velocity-30
Tf is final time-15
Ti is initial time-0
A = 330-30 divided by 15-0
A = 300 divided by 15
A= 20 m/s^2
Hope this helps
De broglie wavelength,
, where h is the Planck's constant, m is the mass and v is the velocity.

Mass of hydrogen atom, 
v = 440 m/s
Substituting
Wavelength 

So the de broglie wavelength (in picometers) of a hydrogen atom traveling at 440 m/s is 902 pm