Answer:Obtain a systematic sample by selecting every 20th vehicle that passes (in any lane and going in any direction).
Step-by-step explanation:
By definition, the average rate of change is given by:

We evaluate each of the functions in the given interval.
We have then:
For f (x) = x ^ 2 + 3x:
Evaluating for x = -2:

Evaluating for x = 3:

Then, the AVR is:




For f (x) = 3x - 8:
Evaluating for x =4:

Evaluating for x = 5:

Then, the AVR is:



For f (x) = x ^ 2 - 2x:
Evaluating for x = -3:

Evaluating for x = 4:

Then, the AVR is:




For f (x) = x ^ 2 - 5:
Evaluating for x = -1:

Evaluating for x = 1:

Then, the AVR is:




Answer:
from the greatest to the least value based on the average rate of change in the specified interval:
f(x) = x^2 + 3x interval: [-2, 3]
f(x) = 3x - 8 interval: [4, 5]
f(x) = x^2 - 5 interval: [-1, 1]
f(x) = x^2 - 2x interval: [-3, 4]
Answer: A/ alina swims about 0.7 miles per hour
Step-by-step explanation:
Answer:
- Andre subtracted 3x from both sides
- Diego subtracted 2x from both sides
Step-by-step explanation:
<u>Andre</u>
Comparing the result of Andre's work with the original, we see that the "3x" term on the right is missing, and the x-term on the left is 3x less than it was. It is clear that Andre subtracted 3x from both sides of the equation.
__
<u>Diego</u>
Comparing the result of Diego's work with the original, we see that the "2x" term on the left is missing, and the x-term on the right is 2x less than it was. It is clear that Diego subtracted 2x from both sides of the equation.
_____
<em>Comment on their work</em>
IMO, Diego has the right idea, as his result leaves the x-term with a positive coefficient. He can add 8 and he's finished, having found that x=14.
Andre can subtract 6 to isolate the variable term, and that will give him -x=-14. This requires another step to get to x=14. Sometimes minus signs get lost, so this would not be my preferred sequence of steps.
As a rule, I like to add the opposite of the variable term with the least (most negative) coefficient. This results in the variable having a positive coefficient, making errors easier to avoid.