Answer:
Al 72.61%
Mg 27.39%
Explanation:
To obtain the mass percentages, we need to place the individual masses over the total mass and multiply by 100%.
If we observe clearly, we can see that the parameters given are the moles. We need to convert the moles to mass.
To do this ,we need to multiply the moles by the atomic masses. The atomic mass of aluminum is 27 while that of magnesium is 24.
Now, the mass of aluminum is thus = 27 * 0.0898 = 2.4246g
The mass of magnesium is 0.0381 * 24 = 0.9144g
We can now calculate the mass percentage.
The total mass is 0.9144 + 2.4246 = 3.339g
% mass of Al = 2.4246/3.339 * 100 = 72.61%
% mass of Mg = 0.9144/3.39 * 100 = 27.39%
<span>440 g
First, determine the volume of each sheet. And it's easier if each dimension is using the same unit of measure. So each sheet is 28 cm by 22 cm by 0.30 cm. Multiply them together
28 cm * 22 cm * 0.30 cm= 184.8 cm^3
Since we have 2 identical sheets, double the total volume
184.8 cm^3 * 2 = 369.6 cm^3
Now multiple the volume by the density
369.6 cm^3 * 1.2 g/cm^3 = 443.52 g
Round the results to 2 significant digits since all of the given figures are only 2 significant digits long.
443.52 g = 440 g</span>
Answer:
the health codes would not cover the food service complaints
Answer:
Molar concentration of the Fe³⁺ in the unknown solution is 8.01x10⁻⁵M.
Explanation:
When you make a calibration curve in a spectrophotographic analysis you are applying the Lambert-Beer law that states the concentration of a compound is directely proportional to its absorbance:
A = E*l*C
<em>Where A is absorbance, E is molar absorption coefficient, l is optical path length and C is molar concentration</em>
<em />
Using the equation of the line you obtain:
y = 4541.6X + 0.0461
<em>Where Y is absorbance and X is concentration -We will assume concentration is given in molarity-</em>
As absorbance of the unknown is 0.410:
0.410 = 4541.6X + 0.0461
X = 8.01x10⁻⁵M
<h3>Molar concentration of the Fe³⁺ in the unknown solution is 8.01x10⁻⁵M.</h3>
<em />