Answer:

Explanation:
We are given that
Work done by the system=
J
Heat transfer into the system=
J
Heat transfer to the environment=
J
We have to find the change in internal energy
By first law of thermodynamics


Substitute the values then we get


Hence, the change in internal energy =
Answer:
the middle
Explanation:
the left one bulb gets power from the outher bulb
the one on right has more bulbs
Answer:
13.54 N/m
0.6 m
4.37 m/s
32.496 m/s²
Explanation:
m = Mass of block = 0.25 kg
k = Spring constant
A = Amplitude
x = Compression of spring = 0.24 m
a = Acceleration = -13 m/s²
v = Velocity = 4 m/s
The weight of the block and force on spring is equal

The spring's force constant is 13.54 N/m
Total energy of the system is given by

At maximum displacement v = 0


The amplitude of the motion is 0.6 m
Speed of the block

The maximum speed of the block during its motion is 4.37 m/s
Forces in the spring

Maximum magnitude of the block's acceleration during its motion is 32.496 m/s²
For free fall motion the displacement can be found by graphically as well as by kinematics equation
Here acceleration of object is constant as it fall due to gravity so we can use

here if body starts with zero initial speed then we can say

here we need to find the displacement from t = 0 to t = 6s
so we can say


so the displacement will be 176.4 m
in order to find the displacement from the graph of velocity and time we need to find the area under the graph for given time interval that will also give us same displacement for given period of time.