By definition, the kinetic energy is given by:
K = (1/2) * m * v ^ 2
where
m = mass
v = speed
We must then find the speed of both objects:
blue puck
v = root ((0) ^ 2 + (- 3) ^ 2) = 3
gold puck
v = root ((12) ^ 2 + (- 5) ^ 2) = 13
Then, the kinetic energy of the system will be:
K = (1/2) * m1 * v1 ^ 2 + (1/2) * m2 * v2 ^ 2
K = (1/2) * (4) * (3 ^ 2) + (1/2) * (6) * (13 ^ 2)
K = <span>
525</span> J
answer
The kinetic energy of the system is<span>
<span>525 </span></span>J
Answer:
There is an inward force acting on the can
Explanation:
This inward force is known as Centripetal force and it is responsible for making the can whirl on the end of a string in circle and it is also directed towards the center around which the can is moving.
Answer:
longer than
Explanation:
given,
time of nap = 10 min
speed of orbiting earth = 8000 m/s
c is the speed of light
using the equation of time dilation

now inserting all the values


t' = 10.001 s
on solving the above equation we will get a value greater than 10minutes.
hence, On earth time of nap measured will be longer than 10 min
Answer:
Given that
V= 0.06 m³
Cv= 2.5 R= 5/2 R
T₁=500 K
P₁=1 bar
Heat addition = 15000 J
We know that heat addition at constant volume process ( rigid vessel ) given as
Q = n Cv ΔT
We know that
P V = n R T
n=PV/RT
n= (100 x 0.06)(500 x 8.314)
n=1.443 mol
So
Q = n Cv ΔT
15000 = 1.433 x 2.5 x 8.314 ( T₂-500)
T₂=1000.12 K
We know that at constant volume process
P₂/P₁=T₂/T₁
P₂/1 = 1000.21/500
P₂= 2 bar
Entropy change given as

Cp-Cv= R
Cp=7/2 R
Now by putting the values


a)ΔS= 20.79 J/K
b)
If the process is adiabatic it means that heat transfer is zero.
So
ΔS= 20.79 J/K
We know that

Process is adiabatic



