Smaller atoms ; free neutrons and energy
One: looks to be correct for both answers. Certainly the first one is. The second depends on your other choices. But military use is one.
Two: is correct. Pd has (in this case) an atomic mass of 114 and its number is 46
Three: Even with my slop numbers, 4.98 is the answer (although I get 4.99 but again, my numbers are pretty sloppy).
Four: Slop numbers say 78.3, but 78 is the right answer.
Five: Slop numbers agree with Al2S3. I think that's D
They are all correct. Very Fine Work.
Answer:
From highest to lowest:
butanol: 117.7 degree Celsius
butanone: 79.64 degree Celsius
diethyl ether: 34.6 degree Celsius
n-butane: -0.4 degree Celsius
Answer: 32.94 g
Explanation: It's stoichiometry problem so balanced equation is required. The balanced equation is given below:

From the balanced equation, krypton and chlorine react in 1:2 mol ratio. We will calculate the moles of each reactant gas using ideal gas law equation(PV = nRT) and then using mol ratio the limiting reactant is figured out that helps to calculate the amount of the product formed.
for Krypton, P = 0.500 atm and for chlorine, P = 1.50 atm
V = 15.0 L
T = 350.8 + 273 = 623.8 K
For krypton, 
n = 0.146 moles
for chlorine, 
n = 0.439
From the mole ratio, 1 mol of krypton reacts with 2 moles of chlorine. So 0.146 moles of krypton will react with 2 x 0.146 = 0.292 moles of chlorine.
Since 0.439 moles of chlorine are available, it is present in excess and hence the limiting reactant is krypton.
So, the amount of product formed is calculated from moles of krypton.
Molar mass of krypton tetrachloride is 225.61 gram per mol.
There is 1:1 mol ratio between krypton and krypton tetrachloride.

= 32.94 g of 
So, 32.94 g of the product will form.
<span>biological reactions that happen within cells while reducing the complex interactions found in a whole cell. Eukaryotic and prokaryotic cells have been used for creation of these simplified environments[1]. Subcellular fractions can be isolated by ultracentrifugation to provide molecular machinery that can be used in reactions in the absence of many of the other cellular components.
Cell-free biosystems can be prepared by mixing a number of purified enzymes and coenzymes. Cell-free biosystems are proposed as a new low-cost biomanufacturing platform compared to microbial fermentation used for thousands of years. Cell-free biosystems have several advantages suitable in industrial applications</span>