answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Firlakuza [10]
2 years ago
12

For television advertising rates, what units are a. in the numerator and b. in the denominator?

Mathematics
1 answer:
Vesna [10]2 years ago
5 0

Answer: a. The unit for the numerator is Dollars

b. The unit for the denominator is seconds.

You might be interested in
Jinghua hiked 4 1/2 miles through the woods in 2 1/4 hours. She hiked the return trip at the same average rate but by a differen
Anna007 [38]

Answer:

5 miles.

Step-by-step explanation:

Consider the question: Jinghua hiked 4 1/2 miles through the woods in 2 1/4 hours. She hiked the return trip at the same average rate but by a different route taking 2 1/2 hours. How many miles did Jinghua hike on the return trip ?

First of all, we will find Jinghua's speed using given information as:

\text{Speed}=\frac{\text{Distance}}{\text{Time}}

Convert mixed fractions into improper fractions:

4\frac{1}{2}\Rightarrow \frac{9}{2}

2\frac{1}{4}\Rightarrow \frac{9}{4}

\text{Jinghua's speed}=\frac{\frac{9}{2}\text{ Miles}}{\frac{9}{4}\text{ Hours}}

Using property \frac{\frac{a}{b}}{\frac{c}{d}}=\frac{ad}{bc}:

\text{Jinghua's speed}=\frac{9*4\text{ Miles}}{9*2\text{ Hours}}

\text{Jinghua's speed}=\frac{2\text{ Miles}}{\text{ Hour}}

We know that distance is equal to the product of speed and time.

\text{Distance}=\text{Speed}\times\text{Time}

Since we have been given that Jingua hiked the return trip at the same average rate, so distance covered by her on return trip would be speed (2 miles her hour) times given time (2 1/2 hours).

\text{Distance covered by Jingua on return trip}=\frac{2\text{ Miles}}{\text{ Hour}}\times 2\frac{1}{2}\text{ Hours}

\text{Distance covered by Jingua on return trip}=2\text{ Miles}\times \frac{5}{2}

\text{Distance covered by Jingua on return trip}=5\text{ Miles}

Therefore, Jingua hiked 5 miles on her return trip.

8 0
2 years ago
All of the following are equivalent ratios except...<br><br>a) AR:RC<br>b) BS:BC<br>c) AR:AC
kiruha [24]
We  know that

in the figure <span>equivalent ratios are
</span>BS/BC
and
AR/AC

therefore

AR/RC is not equivalent

the answer is 
AR/RC

6 0
2 years ago
The center of a circle is at the origin on a coordinate grid. The vertex of a parabola that opens upward is at (0, 9). If the ci
zhannawk [14.2K]

Answer:

"The maximum number of solutions is one."

Step-by-step explanation:

Hopefully the drawing helps visualize the problem.

The circle has a radius of 9 because the vertex is 9 units above the center of the circle.

The circle the parabola intersect only once and cannot intercept more than once.  

The solution is "The maximum number of solutions is one."

Let's see if we can find an algebraic way:

The equation for the circle given as we know from the problem without further analysis is so far x^2+y^2=r^2.

The equation for the parabola without further analysis is y=ax^2+9.

We are going to plug ax^2+9 into x^2+y^2=r^2 for y.

x^2+y^2=r^2

x^2+(ax^2+9)^2=r^2

To expand (ax^2+9)^2, I'm going to use the following formula:

(u+v)^2=u^2+2uv+v^2.

(ax^2+9)^2=a^2x^4+18ax^2+81.

x^2+y^2=r^2

x^2+(ax^2+9)^2=r^2

x^2+a^2x^4+18ax^2+81=r^2

So this is a quadratic in terms of x^2

Let's put everything to one side.

Subtract r^2 on both sides.

x^2+a^2x^4+18ax^2+81-r^2=0

Reorder in standard form in terms of x:

a^2x^4+(18a+1)x^2+(81-r^2)=0

The discriminant of the left hand side will tell us how many solutions we will have to the equation in terms of x^2.

The discriminant is B^2-4AC.

If you compare our equation to Au^2+Bu+C, you should determine A=a^2

B=(18a+1)

C=(81-r^2)

The discriminant is

B^2-4AC

(18a+1)^2-4(a^2)(81-r^2)

Multiply the (18a+1)^2 out using the formula I mentioned earlier which was:

(u+v)^2=u^2+2uv+v^2

(324a^2+36a+1)-4a^2(81-r^2)

Distribute the 4a^2 to the terms in the ( ) next to it:

324a^2+36a+1-324a^2+4a^2r^2

36a+1+4a^2r^2

We know that a>0 because the parabola is open up.

We know that r>0 because in order it to be a circle a radius has to exist.

So our discriminat is positive which means we have two solutions for x^2.

But how many do we have for just x.

We have to go further to see.

So the quadratic formula is:

\frac{-B \pm \sqrt{B^2-4AC}}{2A}

We already have B^2-4AC}

\frac{-(18a+1) \pm \sqrt{36a+1+4a^2r^2}}{2a^2}

This is t he solution for x^2.

To find x we must square root both sides.

x=\pm \sqrt{\frac{-(18a+1) \pm \sqrt{36a+1+4a^2r^2}}{2a^2}}

So there is only that one real solution (it actually includes 2 because of the plus or minus outside) here for x since the other one is square root of a negative number.

That is,

x=\pm \sqrt{\frac{-(18a+1) \pm \sqrt{36a+1+4a^2r^2}}{2a^2}}

means you have:

x=\pm \sqrt{\frac{-(18a+1)+\sqrt{36a+1+4a^2r^2}}{2a^2}}

or

x=\pm \sqrt{\frac{-(18a+1)-\sqrt{36a+1+4a^2r^2}}{2a^2}}.

The second one is definitely includes a negative result in the square root.

18a+1 is positive since a is positive so -(18a+1) is negative

2a^2 is positive (a is not 0).

So you have (negative number-positive number)/positive which is a negative since the top is negative and you are dividing by a positive.

We have confirmed are max of one solution algebraically. (It is definitely not 3 solutions.)

If r=9, then there is one solution.

If r>9, then there is two solutions as this shows:

x=\pm \sqrt{\frac{-(18a+1)+\sqrt{36a+1+4a^2r^2}}{2a^2}}

r=9 since our circle intersects the parabola at (0,9).

Also if (0,9) is intersection, then

0^2+9^2=r^2 which implies r=9.

Plugging in 9 for r we get:

x=\pm \sqrt{\frac{-(18a+1)+\sqrt{36a+1+4a^2(9)^2}}{2a^2}}

x=\pm \sqrt{\frac{-(18a+1)+\sqrt{36a+1+324a^2}}{2a^2}}

x=\pm \sqrt{\frac{-(18a+1)+\sqrt{(18a+1)^2}}{2a^2}}

x=\pm \sqrt{\frac{-(18a+1)+18a+1}{2a^2}}

x=\pm \sqrt{\frac{0}{2a^2}}

x=\pm 0

x=0

The equations intersect at x=0. Plugging into y=ax^2+9 we do get y=a(0)^2+9=9.  

After this confirmation it would be interesting to see what happens with assume algebraically the solution should be (0,9).

This means we should have got x=0.

0=\frac{-(18a+1)+\sqrt{36a+1+4a^2r^2}}{2a^2}

A fraction is only 0 when it's top is 0.

0=-(18a+1)+\sqrt{36a+1+4a^2r^2}

Add 18a+1 on both sides:

18a+1=\sqrt{36a+1+4a^2r^2

Square both sides:

324a^2+36a+1=36a+1+4a^2r^2

Subtract 36a and 1 on both sides:

324a^2=4a^2r^2

Divide both sides by 4a^2:

81=r^2

Square root both sides:

9=r

The radius is 9 as we stated earlier.

Let's go through the radius choices.

If the radius of the circle with center (0,0) is less than 9 then the circle wouldn't intersect the parabola.  So It definitely couldn't be the last two choices.

7 0
2 years ago
Read 2 more answers
The parent function f(x) = x3 is represented by graph A. Graph A is transformed to get graph B and graph C. Write the functions
Alekssandra [29.7K]
Graph B represents the function g(x)=x^3-2 Graph C represents the function h(x)=2x^3
4 0
2 years ago
Read 2 more answers
A combination washer/dryer costs $1,179. New parts for this washer/dryer cost $211, labor to repair it costs $553, and shipping
Keith_Richards [23]
The better deal is the Full Warranty, by approximately 174 dollars. To solve the cost of the full warranty, simply multiply 30 percent times the cost of the washer/dryer.30 x 1,179 = 353.70. You do not need to add anything to this because the warranty covers the extra costs. To solve for the cost of the limited warranty, multiply 14 percent times the cost of the washer/dryer, plus the cost of the new parts and the repair center costs (the warranty only covers the labor repair costs): (.14 x 1,179) + 211 + 152 --> 165.06 + 211 + 152 = 528.06. The full warranty is clearly cheaper. To figure out by how much, simply subtract the full warranty from the limited warranty: 528.06 - 353.70 = 174.36. To round to the nearest number, take off the decimal: 174. So that means your answer is D hope this helps.
3 0
2 years ago
Read 2 more answers
Other questions:
  • What number is 1/10 as great as 7962
    12·2 answers
  • What is the probability of making a type ii error when the machine is overfilling by .5 ounces (to 4 decimals)?
    8·1 answer
  • The quadratic function f has a vertex at (3,4) and opens upward. The quadratic function g is shown below as g(x)=2(x-4)2+3. Whic
    5·1 answer
  • Torrey starts a new job with an annual salary of $60,000. For each year she continues to work for the same company, she will rec
    13·2 answers
  • What is the slope of the line represented by the equation y = y equals StartFraction 4 Over 5 EndFraction x minus 3.x – 3?
    13·2 answers
  • Juan buys 2.8 pounds of turkey. The turkey costs $4.55 for each pound. How much does Juan spend for the turkey?
    11·2 answers
  • \begin{aligned} &amp;2x-3y=-5 \\\\ &amp;4x-4y=-4 \end{aligned} ​ 2x−3y=−5 4x−4y=−4 ​ Is (2,3)(2,3)left parenthesis, 2, comma, 3,
    15·1 answer
  • Each side of a square field is 50m long. A barricade is to be placed along the diagonal of the field. Find the length of the bar
    12·2 answers
  • On each coordinate plane, the parent function f(x) = |x| is represented by a dashed line and a translation is represented by a s
    5·2 answers
  • PLEASE HELP!!!!!!! FOR A TEST
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!