Answer:
Follows are the solution to this question:
Explanation:
- Fact: In this, the ice is melted at 0 ° C.
- law: It is used to repeated experiments consistently showed which objects marked to both the contrary attract each law.
- Hypothesis: If carbohydrates and nitrogen are combined at 1500 ° C, they interact with one another.
- Theory: Protons, nuclei, or ions are made of Atoms. As these molecules could not be seen explicitly, such legal structure several experimental observations.
<u>Answer:</u> The mass of 97 % of NaOH solution required is 114.33 g
<u>Explanation:</u>
To calculate mass of a substance, we use the equation:
We are given:
Density of 10 % solution = 1.109 g/mL
Volume of 10% solution = 1 L = 1000 mL (Conversion factor: 1 L = 1000 mL)
Putting values in above equation, we get:

The mass of 10 % solution is 1109 g.
To calculate the mass of concentrated solution, we use the equation:

where,
are the concentration and mass of concentrated solution.
are the concentration and mass of diluted solution.
We are given:

Putting values in above equation, we get:

Hence, the mass of 97 % of NaOH solution required is 114.33 g
Answer:
The only statement about monosaccharide structure which is true is b. (Monosaccharides can be classified according to the spatial arrangement of their atoms)
Explanation:
Monosaccharides are simple sugars that are classified according to the amount of carbon atoms and based on these numbers, we can call them trioses, pentoses and hexoses. They are molecules with aldehyde (aldose) or centone (ketose) groups that have more than one alcohol function, but which do not differ in their position (OH). They do not contain N, since their general formula is Cx (H2O) x. A 6-carbon monosaccharide is called hexose, since the pentose only has 5
Answer:
So, we rely on radiometric dating to calculate their ages. Radiometric dating, or radioactive dating as it is sometimes called, is a method used to date rocks and other objects based on the known decay rate of radioactive isotopes.
Explanation:
radiometric dating is a very accurate way to date the Earth.We know it is accurate because radiometric dating is based on the radioactive decay of unstable isotopes. When an unstable Uranium (U) isotope decays, it turns into an isotope of the element Lead (Pb).