Answer:
(Choice C) C Replace one equation with a multiple of itself
Step-by-step explanation:
Since system A has the equations
-3x + 12y = 15 and 7x - 10y = -2 and,
system B has the equations
-x + 4y = 5 and 7x - 10 y = -2.
To get system B from system A, we notice that equation -x + 4y = 5 is a multiple of -3x + 12y = 15 ⇒ 3(-x + 4y = 5) = (-3x + 12y = 15).
So, (-x + 4y = 5) = (1/3) × (-3x + 12y = 15)
So, we replace the first equation in system B by 1/3 the first equation in system A to obtain the first equation in system B.
So, choice C is the answer.
We replace one equation with a multiple of itself.
He can divide by 2,3,4,6,8,12,16,24,32, and 48 but
Answer:
=(k−1)*P(X>k−1) or (k−1)365k(365k−1)(k−1)!
Step-by-step explanation:
First of all, we need to find PMF
Let X = k represent the case in which there is no birthday match within (k-1) people
However, there is a birthday match when kth person arrives
Hence, there is 365^k possibilities in birthday arrangements
Supposing (k-1) dates are placed on specific days in a year
Pick one of k-1 of them & make it the date of the kth person that arrives, then:
The CDF is P(X≤k)=(1−(365k)k)/!365k, so the can obtain the PMF by
P(X=k) =P (X≤k) − P(X≤k−1)=(1−(365k)k!/365^k)−(1−(365k−1)(k−1)!/365^(k−1))=
(k−1)/365^k * (365k−1) * (k−1)!
=(k−1)*(1−P(X≤k−1))
=(k−1)*P(X>k−1)
Answer:
1131 pounds.
Step-by-step explanation:
We have been given that an unloaded truck and trailer, with the driver aboard, weighs 30,000 pounds. When fully loaded, the truck holds 26 pallets of cargo, and each of the 18 tires of the fully loaded semi-truck bears approximately 3,300 pounds.
First of all, we will find weight of 18 tires by multiplying 18 by 3,300 as:


The weight of 26 pallets would be weight of 18 tires minus weight of unloaded truck.


Now, we will divide 29,400 by 26 to find average weight of one pallet of cargo.



Therefore, the average weight of one pallet of cargo is approximately 1131 pounds.