There is only 1 real number solution
Answer:
0.14 s
Step-by-step explanation:
s = -2.7 t² + 40t + 6.5
Let s = 12
12 = -2.7t² + 40t + 6.5 Subtract 12 from each side
-2.7t² + 40t + 6.5 - 12 = 0
-2.7t² + 40t - 5.5 = 0
Apply the <em>quadratic formula
</em>

a = -2.7; b = 40; c = -5.5




x = 7.41 ± 7.27
x₁ = 0.14; x₂ = 14.68
The graph below shows the roots at x₁ = 0.134 and x₂ = 14.68.
The Moon’s surface is at -12 ft. The ball will be 12 ft above the Moon’s surface (crossing the x-axis) in 0.14 s.
The second root gives the time the ball will be 12 ft above the Moon’s surface on its way back down.
The answer is A you divide 11.3 by 16
Answer:
The required inequality is
.
Step-by-step explanation:
The given inequalities are


where, x is the driver's age (in years), A(x) is driver’s reaction time to audio stimuli and V(x) is his or her reaction time to visual stimuli, 16 ≤ x ≤ 70.
We need to find an inequality that can be use to find the x-values for which A(x) is less than V(x).



Combine like terms.

where, 16 ≤ x ≤ 70.
Therefore, the required inequality is
.
By definition, the average rate of change is given by:

We evaluate each of the functions in the given interval.
We have then:
For f (x) = x ^ 2 + 3x:
Evaluating for x = -2:

Evaluating for x = 3:

Then, the AVR is:




For f (x) = 3x - 8:
Evaluating for x =4:

Evaluating for x = 5:

Then, the AVR is:



For f (x) = x ^ 2 - 2x:
Evaluating for x = -3:

Evaluating for x = 4:

Then, the AVR is:




For f (x) = x ^ 2 - 5:
Evaluating for x = -1:

Evaluating for x = 1:

Then, the AVR is:




Answer:
from the greatest to the least value based on the average rate of change in the specified interval:
f(x) = x^2 + 3x interval: [-2, 3]
f(x) = 3x - 8 interval: [4, 5]
f(x) = x^2 - 5 interval: [-1, 1]
f(x) = x^2 - 2x interval: [-3, 4]