A. 4 cm behind the mirror
<span> For any mirror, </span><span><span>so</span><span>si</span>=<span>f^2</span></span>. Therefore, by plugging in the values, you get <span>18<span>si</span>=144. 144/18 = 8, so </span><span><span>si</span>=8</span>
<span> The focal point is located 12 cm from the mirror, and </span><span>si</span><span> is the distance of the image from the focal point, so the image is 4 cm from the mirror. The mirror is convex, so then the focal point and the image are both behind the mirror.</span>
Answer:
The separation between the first two minima on either side is 0.63 degrees.
Explanation:
A diffraction experiment consists on passing monochromatic light trough a small single slit, at some distance a light diffraction pattern is projected on a screen. The diffraction pattern consists on intercalated dark and bright fringes that are symmetric respect the center of the screen, the angular positions of the dark fringes θn can be find using the equation:
with a the width of the slit, n the number of the minimum and λ the wavelength of the incident light. We should find the position of the n=1 and n=2 minima above the central maximum because symmetry the angular positions of n=-1 and n=-2 that are the angular position of the minima below the central maximum, then:
for the first minimum
solving for θ1:


for the second minimum:



So, the angular separation between them is the rest:


C) electrical energy is transformed into heat energy
Answer:
The following equation can be used.
(32°F − 32) × 5/9=C