Answer:
to which cations from the salt bridge migrate
Explanation:
A voltaic cell is an electrochemical cell that uses spontaneous redox reactions to generate electricity. It's composed of a cathode, an anode, and a salt bridge.
In cathode, the substance is gaining electrons, so it's reducing, in the anode, the substance is losing electrons, so it's oxidating. The flow of electrons is from the anode to the cathode.
The salt bridge is a bond between the cathode and the anode. When the redox reaction takes place, the substances produce its ions, so the solution is no more neutral. The salt bridge allows the solutions to become neutral and the redox reaction continues.
So, the cathode produces anions, which goes to the anode, and the anode produces cations, which goes to the cathode. Then, the cathode n a voltaic cell is the electrode to which cations from salt bridge migrate and where the reduction takes place.
Answer:
1.61 × 10⁶ kJ
Explanation:
The human burns energy so as to be healthy.
The amount of energy burnt per day by an adult human is 2 × 20³ kcal per day. Since there is 24 hours in a day, the amount of energy burnt per hour is 2 × 20³ × 24 = 48 × 20³ kcal per hour.
The conversion rate of kcal to kJ is 1 kcal = 4.184 kJ. Therefore converting the kcal per hour to kJ per hour gives:
48 × 20³ × 4.184 = 200.882 × 20³ kJ = 1.61 × 10⁶ kJ
Answer:
88.8 minutes
Explanation:
Graham's law of diffusion relates rate of difusion by the following formula
Rate1 / rate 2 = √( Mass of argon / Mass of Neon)
Where rate = volume divided by time
Rate 1 = 10 ml / t1
Rate 2 = 10 ml / t2
Rate 1/ rate 2 = 10 ml / t1 ÷ 10 ml/ t2 = t2/ t1
t2/t1 = √(Mass of argon / mass of Neon) = √( 39.984/20.179)
125 / t1 = 1.4026
t1 = 125 / 1.4026 = 88.8 minutes
First let us determine the electronic configuration of
Bromine (Br). This is written as:
Br = [Ar] 3d10 4s2 4p5
Then we must recall that the greatest effective nuclear
charge (also referred to as shielding) greatly increases as distance of the
orbital to the nucleus also increases. So therefore the electron in the
farthest shell will experience the greatest nuclear charge hence the answer is:
<span>4p orbital</span>
Answer:
0.019 moles of M2CO3
Explanation:
M2CO3(aq) + BaCl2 (aq) --> 2MCl (aq) + BaCO3(s)
From the equation above;
1 mol of M2CO3 reacts to produce 1 mol of BaCO3
Mass of BaCO3 formed = 3.7g
Molar mass of BaCO3 = 197.34g/mol
Number of moles = Mass / Molar mass = 3.7 / 197.34 = 0.0187 ≈ 0.019mol
Since 1 mol of M2CO3 reacts with 1 mol of BaCO3,
1 = 1
x = 0.019
x = 0.019 moles of M2CO3