Answer:
Given Polynomial:

Factors of Coefficient of terms
80 = 5 × 16
32 = 2 × 16
48 = 3 × 16
Common factor of the coefficient of all term is 16.
Each term contain variable. So the Minimum power of b is common from all terms.
Common from all variable part comes b².
So, Common factor of the polynomial = 16b²
⇒ 16b² ( 5b² ) - 16b² ( 2c³ ) + 16b² ( 3b²c )
⇒ 16b² ( 5b² - 2c³ + 3b²c )
Therefore, Statements that are true about David's word are:
The GCF of the coefficients is correct.
The variable c is not common to all terms, so a power of c should not have been factored out.
In step 6, David applied the distributive property
X: earn per hour during the week
y: earn per hour during the weekend
13x + 14y = 250.90
15x + 8y = 204.70
Multiply the first equation by 4 and the second equation by 7
52x + 56y = 1003.6
105x + 56y = 1432.90
Subtract the first equation from the second:
53x = 429.30
x = 429.30/ 53
x = 8.10
Solve any of the equation for y:
15x + 8y = 204.70
y = [204.70 - 15(8.10)]/8 = 10.40
y - x = 10.40 -8.10 = 2.30
Answer: she earns $2.30 per hour more during the weekend than during the week.
Converting angle measure of 55.45 to DMS notation we get 55 degrees 27 minutes 0 seconds
Step-by-step explanation:
We need to convert angle measure of 55.45 to DMS notation
DMS notation is Degree Minute and seconds
Solving:
We have 55.45, the value before decimal is considered as degrees and values after decimal can be minutes and seconds.
We can write it as 55 and 0.45
So, we have 55 degrees
To find minutes we will multiply 0.45 by 60
0.45*60 = 27 minutes
Since we have no decimal value in minutes so seconds will be 0
So, DMS will be 55 degrees 27 minutes 0 seconds
Hence converting angle measure of 55.45 to DMS notation we get 55 degrees 27 minutes 0 seconds