The problem states that the distance travelled (d) is
directly proportional to the square of time (t^2), therefore we can write this in
the form of:
d = k t^2
where k is the constant of proportionality in furlongs /
s^2
<span>Using the 1st condition where d = 2 furlongs, t
= 2 s, we calculate for the value of k:</span>
2 = k (2)^2
k = 2 / 4
k = 0.5 furlongs / s^2
The equation becomes:
d = 0.5 t^2
Now solving for d when t = 4:
d = 0.5 (4)^2
d = 0.5 * 16
<span>d = 8 furlongs</span>
<span>
</span>
<span>It traveled 8 furlongs for the first 4.0 seconds.</span>
Answer:
293.7 degrees
Explanation:
A = - 8 sin (37) i + 8 cos (37) j
A + B = -12 j
B = a i+ b j , where and a and b are constants to be found
A + B = (a - 8 sin (37) ) i + ( 8cos(37) + b ) j
- 12 j = (a - 8 sin (37) ) i + ( 8cos(37) + b ) j
Comparing coefficients of i and j:
a = 8 sin (37) = 4.81452 m
b = -12 - 8cos(37) = -18.38908
Hence,
B = 4.81452 i - 18.38908 j ..... 4 th quadrant
Hence,
cos ( Q ) = 4.81452 / 12
Q = 66.346 degrees
360 - Q = 293.65 degrees from + x-axis in CCW direction
Answer:
a) battery-->electrical current-->copper wire rotor -->magnet--> mechanical energy
Explanation:
Answer:
Plasma
Explanation:
For a fusion reaction to take place, there must be conditions in which the particles have extreme thermal kinetic energies, in this way the collisions that cause the nuclear fusion are generated. Therefore, it is necessary to reach very high temperatures, in which the state of matter will necessarily be plasma.
Nope. It's called 'centripetal' acceleration. The force that created it MAY be gravitational, but it doesn't have to be. For things on the surface of the Earth moving in circles, it's never gravity.