Answer:
In the long run cost of the refrigerator g(x) will be cheaper.
Step-by-step explanation:
The average annual cost for owning two different refrigerators for x years is given by two functions
f(x) = 
= 
and g(x) = 
= 
If we equate these functions f(x) and g(x), value of x (time in years) will be the time by which the cost of the refrigerators will be equal.
At x = 1 year
f(1) = 850 + 62 = $912
g(1) = 1004 + 51 = $1055
So initially f(x) will be cheaper.
For f(x) = g(x)
= 


x = 
Now f(15) = 56.67 + 62 = $118.67
and g(x) = 66.93 + 51 = $117.93
So g(x) will be cheaper than f(x) after 14 years.
This tells below 14 years f(x) will be less g(x) but after 14 years cost g(x) will be cheaper than f(x).
Answer:
Provided in the picture below.
Step-by-step explanation:
Provided in the picture below.
Answer:
2400 lbs
Step-by-step explanation:
To find the best estimate, you have to round the numbers to the nearest ten.
39 -> 40
58 -> 60
40 x 60 = 2400
Answer:
a) 
b) Wind capacity will pass 600 gigawatts during the year 2018
Step-by-step explanation:
The world wind energy generating capacity can be modeled by the following function

In which W(t) is the wind energy generating capacity in t years after 2014, W(0) is the capacity in 2014 and r is the growth rate, as a decimal.
371 gigawatts by the end of 2014 and has been increasing at a continuous rate of approximately 16.8%.
This means that

(a) Give a formula for W , in gigawatts, as a function of time, t , in years since the end of 2014 . W= gigawatts



(b) When is wind capacity predicted to pass 600 gigawatts? Wind capacity will pass 600 gigawatts during the year?
This is t years after the end of 2014, in which t found when W(t) = 600. So




We have that:

So we apply log to both sides of the equality





It will happen 3.1 years after the end of 2014, so during the year of 2018.
7 3/4 × 3/4 = So u add 3×3=9
Then add 4×4=16 Give you 9/16
Then you add that 7 you left out with 9/16
But just the 9 not the 16
7 × 9 = 63 And your answer is 63/16
Hope i help :-)