The force that holds protons and neutrons together is too strong to overcome.
<h3>Explanation</h3>
Consider the location of the particles in an atom.
- Electrons are found outside the nucleus.
- Protons and neutrons are found within the nucleus.
Protons carry positive charges and repel each other. The nucleus will break apart without the strong force that holds the protons and neutrons together. This force is much stronger than the attraction between the nucleus and the electrons. X-rays are energetic enough for removing electrons from an atom. However, you'll need a collider to remove protons from a stable nucleus. You could well have ionized the atom with all that energy.
Also, changing the number of protons per nucleus will convert the halogen atom to an atom of a different element. Rather than making the halogen negative, removing a proton will convert the halogen atom to the negative ion of a different element.
As a rule, opposite charges attract. So,you would expect that the particle that would deflect towards the positive electrode has a negative charge. Now, an alpha particle is basically a neutral Helium atom. Beta particle is an electron. Gamma particle has no charge (neutral). <em>Thus, the answer is B.</em>
Answer:
I believe it is Potassium (K)
Explanation:
I did the math on a calculator and it was the closest atomic mass to potassium.
Answer:
When the operation of the voltaic cell, which is formed of an aluminum and silver strip takes place, the atom of aluminum loses three of its electrons and the Al3+ formed moves within the solution. The Al3+ ion gets dissolved within the solution and the electrons lost in the process moves through the wire and get acquired by the ions of silver, which then get reduced to solid Ag resulting in the mass gain of silver strip.
Answer:
Molecular formula → PbSO₄ → Lead sulfate
Option c.
Explanation:
The % percent composition indicates that in 100 g of compound we have:
68.3 g of Pb, 10.6 g of S and (100 - 68.3 - 10.6) = 21.1 g of O
We divide each element by the molar mass:
68.3 g Pb / 207.2 g/mol = 0.329 moles Pb
10.6 g S / 32.06 g/mol = 0.331 moles S
21.1 g O / 16 g/mol = 1.32 moles O
We divide each mol by the lowest value to determine, the molecular formula
0.329 / 0.329 = 1 Pb
0.331 / 0.329 = 1 S
1.32 / 0.329 = 4 O
Molecular formula → PbSO₄ → Lead sulfate