Answer:
104.84 moles
Explanation:
Given data:
Moles of Boron produced = ?
Mass of B₂O₃ = 3650 g
Solution:
Chemical equation:
6K + B₂O₃ → 3K₂O + 2B
Number of moles of B₂O₃:
Number of moles = mass/ molar mass
Number of moles = 3650 g/ 69.63 g/mol
Number of moles = 52.42 mol
Now we will compare the moles of B₂O₃ with B from balance chemical equation:
B₂O₃ : B
1 : 2
52.42 : 2×52.42 = 104.84
Thus from 3650 g of B₂O₃ 104.84 moles of boron will produced.
Heat
gained in a system can be calculated by multiplying the given mass to the
specific heat capacity of the substance and the temperature difference. It is
expressed as follows:<span>
Heat = mC(T2-T1)</span>
1540 = 200.0 (C)(40 - 20)
<span>
<span>C = 0.385 J / g C</span></span>
<span><span>
</span></span>
<span><span>Hope this answers the question. Have a nice day.</span></span>
Answer:
The answer to be filled in the respective blanks in question is
3 and 1
Explanation:
So, we know that the formation of cabon-dioxide mole and that of Adenosin-Tri-Phosphate (ATP) moles will be in the ratio of 3:1 i.e., three carbon-di-oxide moles and 1 ATP mole.
Therefore, we can say that one pyruvate mole when passed through citric acid cycle and pyruvate dehydrogenase yields carbon-di-oxide and ATP moles in the ratio 3:1
The element is Am and since you lose e- there must be a postive charge. Am+6 is the symbol
Your answer would be a change in odor! Hope this helps! ;D