Easy stoichiometry conversion :)
So, for stoichiometry, we always start with our "given". In this case, it would be the 10.0 grams of NaHCO3. This unit always goes over 1.
So, our first step would look like this:
10.0
------
1
Next, we need to cancel out grams to get to moles. To do this, we will do grams of citric acid on the BOTTOM of the next step, so it cancels out. This unit in grams will be the mass of NaHCO3, which is 84.007. Then, we will do our unit of moles on top. Since this is unknown, it will be 1.
So, our 2nd step would look like this:
1 mole CO2
-----------------
84.007g NaHCO3
When we put it together: our complete stoichiometry problem would look like this:
10.0g NaHCO3 1mol CO2
---------------------- x -------------------------
1 84.007g NaHCO3
Now to find our answer, all we need to do is:
Multiply the two top numbers together (which is 10.0)
Multiply the two bottom numbers together (Which is 84.007)
And then....
Divide the top answer by the bottom answer.
10.0/84.007 is 0.119
So, from 10.0 grams of citric acid, we have 0.119 moles of CO2.
Hope I could help!
The final state is a gas, because the substance can fill the container.
The molecules in a gas have the highest energy of the three states ant the partilces are far enough away from each other to permit that they move freely and fill the container.
The initial state is solid, becasue the particles cannot slide past one another.
The particles in a solid are tightly packed and can vibrate but not translate, while in liquid state the particles are close but can move more more freely and can slide past one another.
So, the change described is from solid to gas.
Answer:
See the answer below
Explanation:
<em>The complete question can be seen in the attached image.</em>
<u>Phenolphthalein is an indicator that is often utilized in an acid-base reaction to indicate the endpoints of such reactions due to its ability to change color from pink/colorless to colorless/pink depending on if the final solution is acidic or basic.</u>
Phenolphthalein is usually colorless in acidic solutions and appears pink in basic solutions. The more basic or alkaline a solution is, the stronger the pink color of phenolphthalein. Hence;
1. Ammonia with a pH of 11 is basic, phenolphthalein will turn pink.
2. Battery acid with a pH of 1 is acidic, it will remain colorless.
3. Lime juice with a pH of 2 is acidic, it will remain colorless.
4. Mashed avocado with a pH of 6.5 is acidic, it will remain colorless.
5. Seawater with a pH of 8.5 is basic, it will turn pink.
6. Tap water with a pH of 7 is neutral, it will remain colorless
Answer:
true I just took the test this morning