answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sergij07 [2.7K]
2 years ago
7

Consider the process of diluting 1.2 M NH4Cl solution to prepare 1.4 L of a 0.25 M NH4Cl solution. Determine if each of the foll

ow statement is True or False. (1) The dilution equation M1V1 = M2V2 is a balance of moles of the solute, which is NH4Cl in this question.
Chemistry
1 answer:
stepan [7]2 years ago
8 0

Answer: True the dilution formula is a balanced of mole of the solute..

Explanation:

M1V1 = M2V2

When M1= 1.2M, M2= 0.25M V2= 1.4L and V1= ?

Then V1= 0.25*1.4/1.2

= 0.29

This indicate that 0.29L of the 1.2M NH4Cl will be dilluted to 0.25M in 1.4L of the solution....

The mole number of the solute remain constant

You might be interested in
6K + B2O3 → 3K2O + 2B
atroni [7]

Answer:

104.84 moles

Explanation:

Given data:

Moles of Boron produced = ?

Mass of B₂O₃ = 3650 g

Solution:

Chemical equation:

6K + B₂O₃    →    3K₂O + 2B

Number of moles of B₂O₃:

Number of moles = mass/ molar mass

Number of moles = 3650 g/ 69.63 g/mol

Number of moles = 52.42 mol

Now we will compare the moles of  B₂O₃ with B from balance chemical equation:

                 B₂O₃          :          B

                    1              :          2

                52.42         :        2×52.42 = 104.84

Thus from 3650 g of  B₂O₃  104.84 moles of boron will produced.

6 0
2 years ago
The standard molar heat of fusion of ice is 6020 j/mol. calculate q, w, and ∆e for melting 1.00 mol of ice at 0◦c and 1.00 atm p
zysi [14]

Answer :    q = 6020 J, w = -6020 J, Δe = 0

Solution : Given,

Molar heat of fusion of ice = 6020 J/mole

Number of moles = 1 mole

Pressure = 1 atm

Molar heat of fusion : It is defined as the amount of energy required to melt 1 mole of a substance at its melting point. There is no temperature change.

The relation between heat and molar heat of fusion is,

q=\Delta H_{fusion}(\frac{Mass}{\text{ Molar mass}})  (in terms of mass)

or, q=\Delta H_{fusion}\times Moles     (in terms of moles)

Now we have to calculate the value of q.

q=6020J/mole\times 1Mole=6020J

When temperature is constant then the system behaves isothermally and Δe is a temperature dependent variable.

So, the value of \Delta e=0

Now we have to calculate the value of w.

Formula used :    \Delta e=q+w

where, q is heat required, w is work done and \Delta e is internal energy.

Now put all the given values in above formula, we get

0=6020J+w

w = -6020 J

Therefore, q = 6020 J, w = -6020 J, Δe = 0

3 0
2 years ago
The pOH of a solution is 6.0. Which statement is correct? Use p O H equals negative logarithm StartBracket upper O upper H super
Katen [24]

Answer:

The pH of the solution is 8.

Explanation:

To which options are correct, let us determine the concentration of the hydroxide ion, [OH-] and the pH of the solution. This is illustrated below:

1. The concentration of the hydroxide ion, [OH-] can be obtained as follow:

pOH = –Log [OH-]

pOH = 6

6 = –Log [OH-]

–6 = Log [OH-]

[OH-] = Antilog (–6)

[OH-] = 1x10^–6 mol/L

2. The pH of the solution can be obtained as follow:

pH + pOH = 14

pOH = 6

pH + 6 = 14

pH = 14 – 6

pH = 8.

From the calculations made above,

[OH-] = 1x10^–6 mol/L

pH = 8.

Therefore, the correct answer is:

The pH of the solution is 8

3 0
2 years ago
Which best describes the relationships between subatomic particles in any neutral atom? * 1 point the number of electrons equals
Anna71 [15]

Atomic number = protons

Protons = P  Electrons = E     P = E

Atomic mass = Neutrons + Protons

Atomic number = atomic mass = neutrons

P = E

AM - AN = N

Example:

Calcium = 20 Protons  20P = 20E

Atomic mass - atomic number = neutrons :)

4 0
2 years ago
When of benzamide are dissolved in of a certain mystery liquid , the freezing point of the solution is less than the freezing po
SOVA2 [1]

The given question is incomplete. The complete question is as follows.

When 70.4 g of benzamide (C_{7}H_{7}NO) are dissolved in 850 g of a certain mystery liquid X, the freezing point of the solution is 2.7^{o}C lower than the freezing point of pure X. On the other hand, when 70.4 g of ammonium chloride (NH_{4}Cl) are dissolved in the same mass of X, the freezing point of the solution is 9.9^{o}C lower than the freezing point of pure X.

Calculate the Van't Hoff factor for ammonium chloride in X.

Explanation:

First, we will calculate the moles of benzamide as follows.

    Moles of benzamide = \frac{mass}{\text{Molar mass of benzamide}}

                    = \frac{70.4 g}{121.14 g/mol}

                    = 0.58 mol

Now, we will calculate the molality as follows.

     Molality = \frac{\text{moles of solute (benzamide)}}{\text{solvent mass in kg}}

                   = \frac{0.58 mol}{0.85 kg}

                   = 0.6837

It is known that relation between change in temperature, Van't Hoff factor and molality is as follows.

      dT = i \times K_{f} \times m,

where,      dT = change in freezing point = 2.7^{o}C

                  i = van't Hoff factor = 1 for non dissociable solutes

      K_{f} = freezing point constant of solvent

                m = 0.6837

Therefore, putting the given values into the above formula as follows.

             dT = i \times K_{f} \times m,

            2.7^{o}C = 1 \times K_{f} \times 0.6837 m

            K_{f} = 3.949 C/m

Now, we use this K_{f} value for calculating i for NH_{4}Cl

So, moles of ammonium chloride are calculated as follows.

 Moles of NH_{4}Cl = \frac{70.4 g}{53.491 g/mol}

                            = 1.316 mol

Hence, calculate the molality as follows.

    Molality = \frac{1.316 mol}{0.85 kg}

                  = 1.5484

It is given that value of change in temperature (dT) = 9.9^{o}C. Thus, calculate the value of Van't Hoff factor as follows.

              dT = i \times K_{f} \times m

   9.9^{o}C = i \times 3.949 C/m \times 1.5484 m

                     i = 1.62

Thus, we can conclude that the value of van't Hoff factor for ammonium chloride is 1.62.

5 0
2 years ago
Other questions:
  • What is the molality of sodium chloride in solution that is 13.0% by mass sodium chloride and that has a density of 1.10 g/ml?
    6·1 answer
  • What did the Romans build as a step toward environmental management? The Romans built to carry water from abundant water areas t
    13·2 answers
  • You are analyzing a solid isolated from a reaction and find that its boiling point is over 1000 ∘ C . You dissolve the compound
    10·1 answer
  • For heat transfer purposes, a standing man can be modeled as a 30-cm-diameter, 175-cm-long vertical cylinder with both the top a
    13·1 answer
  • How many moles are there in 3.612 X 10^24 molecules of phosgene (COCL2)
    14·2 answers
  • Lin received 200 new laptops to be issued to company employees. Lin was asked to set them up and distribute them to everyone on
    12·2 answers
  • A gas of 3.4 moles occupies a volume of 0.046 L at 298 K. What is the pressure in kPa?
    11·1 answer
  • Lithium has an atomic mass of 6.941 amu. Lithium has two common isotopes. The one isotope has a mass of 6.015 amu and a relative
    7·1 answer
  • When collecting temperature as a function of time for the reaction of KOH with HCL, which time is most significant
    8·1 answer
  • Calcite is mineral that is found in limestone and marble. A model of the extended structure of calcite is
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!