Different wavelength are involved.
Explanation:
If magnesium burns with a bright white flame, one can conclude that different wavelengths accompany the electron transitions for the magnesium atom.
- When an atom burns, the electrons in it are excited.
- They give out characteristic light commensurate with their energy.
- A white light is made up of different combinations of wavelength of radiations.
- When we see a white light we can infer that different joined together in the emission observed.
Learn more:
Spectrum brainly.com/question/6255073
#learnwithBrainly
<h3>Answer:</h3>
3.7 Moles of Nitrogen
<h3>
Explanation:</h3>
On observing the chemical formula C₈H₁₁NO₂ (might be formula of Dopamine) it is found that one mole of this compound contains;
8 Moles of Carbon
11 Moles of hydrogen
1 Mole of Nitrogen and
2 Moles of Oxygen respectively.
<u>Calculate Number of Moles of Nitrogen:</u>
As,
1 Mole of C₈H₁₁NO₂ contains = 1 Mole of Nitrogen
So,
3.7 Moles of C₈H₁₁NO₂ will contain = X Moles of Nitrogen
Solving for X,
X = (3.7 Moles × 1 Mole) ÷ 1 Mole
X = 3.7 Moles of Nitrogen
The properties of the atomic orbital are actually
dependent on the quantum numbers.
size of atomic orbital: governed by the principal quantum
number (n)
shape of atomic orbital: governed by the angular momentum
quantum number (l)
orientation in space: governed by the magnetic quantum
number (ml)
Since we are asked about the shape, hence the correct answer
is:
angular momentum quantum number (l)
MgCl₂)= Mg²⁺ + 2Cl⁻
V(MgCl₂)=285cm³=0,285dm³
c(MgCl₂)=0,015 mol/dm³
n(MgCl₂)=c·V= 0,015 mol/dm³ · 0,285dm³ = 0,0042 mol
n(Mg²⁺)=n(MgCl₂)=0,0042 mol
n(Cl⁻)=2n(MgCl₂)=0,0084 mol