In order to construct this equation, we will use the variables:
V to represent mixture volume (40 ml)
C to represent mixture concentration (0.32)
v₁ to represent volume of first solution (40 / 4 = 10 ml)
c₁ to represent concentration of first solution (0.2)
v₂ to represent the volume of the second solution (40 * 3/4 = 30 ml)
c₂ to represent the concentration of the second solution
We know that the total amount of substance, product of the volume and concentration, in the final solution is equal to the individual amounts in the two given solutions. Thus:
VC = v₁c₁ + v₂c₂
40(0.32) = 10(0.2) + 30c
4x - 5y = 40
4x = 40 + 5y
x = 10 + 5/4y
The x intercept is 10.
Answer: 1232
Step-by-step explanation: ( 8x10 -3) x(2x10 -4)
( 8x10 -3) = 77
(2x10 -4) = 16
77 x 16 = 1232
Answer = 1232
1/4, since the radius is also halved if the diameter is halved, meaning (radius/2)^2 is radius^2 * 1/4.
Answer:
The sample consisting of 64 data values would give a greater precision.
Step-by-step explanation:
The width of a (1 - <em>α</em>)% confidence interval for population mean μ is:

So, from the formula of the width of the interval it is clear that the width is inversely proportion to the sample size (<em>n</em>).
That is, as the sample size increases the interval width would decrease and as the sample size decreases the interval width would increase.
Here it is provided that two different samples will be taken from the same population of test scores and a 95% confidence interval will be constructed for each sample to estimate the population mean.
The two sample sizes are:
<em>n</em>₁ = 25
<em>n</em>₂ = 64
The 95% confidence interval constructed using the sample of 64 values will have a smaller width than the the one constructed using the sample of 25 values.
Width for n = 25:
Width for n = 64:
![\text{Width}=2\cdot z_{\alpha/2}\cdot \frac{\sigma}{\sqrt{64}}=\frac{1}{8}\cdot [2\cdot z_{\alpha/2}\cdot \sigma]](https://tex.z-dn.net/?f=%5Ctext%7BWidth%7D%3D2%5Ccdot%20z_%7B%5Calpha%2F2%7D%5Ccdot%20%5Cfrac%7B%5Csigma%7D%7B%5Csqrt%7B64%7D%7D%3D%5Cfrac%7B1%7D%7B8%7D%5Ccdot%20%5B2%5Ccdot%20z_%7B%5Calpha%2F2%7D%5Ccdot%20%5Csigma%5D)
Thus, the sample consisting of 64 data values would give a greater precision